
Oracle PL/SQL Best Practices

,TITLE.17165 Page 1 Friday, June 15, 2001 6:11 PM

,TITLE.17165 Page 2 Friday, June 15, 2001 6:11 PM

Oracle PL/SQL Best Practices

Steven Feuerstein

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TITLE.17165 Page 3 Friday, June 15, 2001 6:11 PM

Oracle PL/SQL Best Practices
by Steven Feuerstein

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Deborah Russell

Production Editor: Mary Anne Weeks Mayo

Cover Designer: Ellie Volckhausen

Printing History:

April 2001: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly & Associates, Inc. Many of the designations used
by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O’Reilly & Associates, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial
caps. The association of the image of red wood ants and the topic of Oracle PL/SQL
best practices is a trademark of O’Reilly & Associates, Inc.

Oracle® and all Oracle-based trademarks and logos are trademarks or registered
trademarks of Oracle Corporation, Inc. in the United States and other countries.
O’Reilly & Associates, Inc. is independent of Oracle Corporation.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

ISBN: 0-596-00121-5

[M] [5/01]

,COPYRIGHT.17040 Page iv Friday, June 15, 2001 6:10 PM

To the many Israeli and Palestinian women

who reject the violence of Israel’s military

occupation and have dedicated their lives to

work for a just and lasting peace

—Steven Feuerstein

,DEDICATION.17523 Page 1 Friday, June 15, 2001 6:14 PM

,DEDICATION.17523 Page 2 Friday, June 15, 2001 6:14 PM

vii

Table of Contents

Preface ... ix

1. The Development Process ... 1

2. Coding Style and Conventions .. 16

3. Variables and Data Structures .. 31
Declaring Variables and Data Structures .. 31

Using Variables and Data Structures ... 36

Declaring and Using Package Variables ... 42

4. Control Structures .. 49
Conditional and Boolean Logic ... 49

Loop Processing ... 53

Miscellaneous ... 63

5. Exception Handling ... 66
Raising Exceptions ... 67

Handling Exceptions .. 74

Declaring Exceptions ... 82

6. Writing SQL in PL/SQL ... 86
General SQL and Transaction Management 87

Querying Data from PL/SQL ... 90

Changing Data from PL/SQL ... 101

Dynamic SQL and Dynamic PL/SQL ... 105

,bestpracTOC.fm.15560 Page vii Friday, June 15, 2001 5:47 PM

viii Table of Contents

7. Program Construction .. 113
Structure and Parameters ... 113

Functions .. 123

Triggers ... 127

8. Package Construction ... 136

9. Built-in Packages .. 158
DBMS_OUTPUT ... 159

UTL_FILE .. 160

DBMS_PIPE .. 169

DBMS_ JOB .. 173

A. Best Practices Quick Reference .. 177

,bestpracTOC.fm.15560 Page viii Friday, June 15, 2001 5:47 PM

ix

Chapter1

Preface

When I first started writing about the Oracle PL/SQL language back in
1994, the only sources of information were the product documentation
(such as it was) and the occasional paper and presentation at Oracle User
Group events. Today, there are at least a dozen books that focus exclu-
sively on PL/SQL, numerous products that help you write PL/SQL code
(integrated development environments, knowledge bases, etc.), training
classes, and web sites. And the community of PL/SQL developers
continues to grow in size and maturity, even with the advent of Java.

Access to information about PL/SQL is no longer the challenge. It can, on
the other hand, be difficult to make sense of all the new features, the
numerous resources, the choices for tools, and so on. When it comes to
writing a program or an entire application, developers have, over and
over again, expressed the desire for advice. They ask:

• How should I format my code?

• What naming conventions, if any, should I use?

• How can I write my packages so that they can be more easily main-
tained?

• What is the best way to query information from the database?

• How can I get all the developers on my team to handle errors the
same way?

So many questions, so much burning desire to write code well, and so
few resources available to help us do that.

,ch00.14275 Page ix Friday, June 15, 2001 5:45 PM

x

So I decided to write a book that offers a concentrated set of “best prac-
tices” for the Oracle PL/SQL language. The objective of this book is to
provide concrete, immediately applicable, quickly located advice that will
assist you in writing code that is readable, maintainable, and efficient.

You will undoubtedly find recommendations in this book that also appear
in some of my other books; I hope you will not be offended by this repe-
tition. It’s simply impossible to offer in a single book everything that can
and should be written about the Oracle PL/SQL language. While I plan to
reinforce these best practices in the appropriate places in my other texts, I
believe that we will all benefit from also having them available in one
concise book, a book designed, beginning to end, to give you quick
access to my recommendations for excellent PL/SQL coding techniques.

Structure of This Book
Oracle PL/SQL Best Practices is composed of nine chapters and one
appendix. Each chapter contains a set of best practices for a particular
area of functionality in the PL/SQL language. For each best practice, I’ve
provided as many of the following elements as are applicable:

Title
A single sentence that describes the best practice and provides an
identifier for it in the form XXX-nn (where XXX is the type of best
practice—for example, EXC for exception handling—and nn is the
sequential number within this set of best practices); see the section
“About the Code” for how to use this identifier online. I have, when-
ever possible, sought to make this title stand on its own. In other
words, you should be able to glance at it and understand its impact
on how you write code. This way, after you’ve read the entire best
practice, you can use Appendix A, Best Practices Quick Reference (or
the pull-out quick-reference card), to instantly remind you of best
practices as you write your code.

Description
A lengthier explanation of the best practice. It’s simply not possible to
cover all the nuances in a single sentence!

Example
We learn best from examples, so just about every best practice illus-
trates, through code and/or anecdote, the value of the best practice.
Whenever it makes sense, I put the example code in a file that you
can use (or learn from) in your own programming environment.
You’ll find these files on the O’Reilly web site (see “About the Code”
later in this Preface).

,ch00.14275 Page x Friday, June 15, 2001 5:45 PM

xi

Benefits
Why should you bother with this best practice? How crucial is it for
you to follow this particular recommendation? This section offers a
quick review of the main benefits you will see by following the best
practice.

Challenges
Wouldn’t it be great if we lived in a world in which following a best
practice was all-around easier than the “quick and dirty” approach?
That is, unfortunately, not always the case. This element warns you
about the challenges, or drawbacks, you might face as you imple-
ment the best practice.

Resources
In the world of the Internet, everything is connected; no programmer
stands alone! This section recommends resources, ranging from books
to URLs to files containing code, that you can use to help you success-
fully follow this best practice. Where filenames are shown in this
section, they refer to files available on, or referenced by, the O’Reilly
web site.

Here are brief descriptions of the chapters and appendix:

Chapter 1, The Development Process, steps back from specific program-
ming recommendations. It offers advice about how to improve the overall
process by which you write code.

Chapter 2, Coding Style and Conventions, offers a series of suggestions on
how to format and organize your code so that it is more readable and,
therefore, more maintainable.

Chapter 3, Variables and Data Structures, takes a close look at how you
ought to declare and manage data within your PL/SQL programs.

Chapter 4, Control Structures, is a “back to basics” chapter that talks about
the best way to write IF statements, loops, and even the GOTO state-
ment! Sure, these aren’t terribly complicated constructs, but there are still
right and wrong ways to work with them.

Chapter 5, Exception Handling, covers another critical aspect of robust
application development: exception handling, or what to do when things
go wrong.

Chapter 6, Writing SQL in PL/SQL, focuses on the most crucial aspect of
PL/SQL development: how you should write the SQL statements in your
programs.

,ch00.14275 Page xi Friday, June 15, 2001 5:45 PM

xii

Chapter 7, Program Construction, offers advice on how best to build your
procedures, functions, and triggers—the program units that contain your
business logic. It also includes best practices for parameter construction.

Chapter 8, Package Construction, steps back from individual program
units to present recommendations for packages, the building blocks of any
well-designed PL/SQL-based application.

Chapter 9, Built-in Packages, focuses on how to take best advantage of a
few of the most often used of the packages provided to us by Oracle
Corporation.

Appendix A, Best Practices Quick Reference, compiles the best practice
titles across all the chapters into a concise resource. Once you have
studied the individual best practices, you can use this appendix as a
checklist, to be reviewed before you begin coding a new program or
application. You’ll also find a removable version of this appendix on the
quick-reference card bound into the back of the book.

How to Use This Book
My primary goal in writing this book was to create a resource that would
make a concrete, noticeable difference in the quality of the PL/SQL code
you write. To accomplish this, the book needs to be useful and usable not
just for general study, but also for day-to-day, program-to-program tasks.
It also needs to be concise and to the point. A 1,000-page text on best
practices would be overwhelming, intimidating, and hard to use.

The result is this relatively brief (I consider any publication under 200
pages a major personal accomplishment!), highly structured book. I
recommend that you approach Oracle PL/SQL Best Practices as follows:

1. Read the next section, “Not All Best Practices Are Created Equal.”
Some of the best practices in this book—whole chapters, in fact—will
have a much higher impact than others on the quality and efficiency
of your code. If you find that your current practices (or those of your
organization) are far from the mark, then you will have identified your
priorities for initial study.

2. Skip to Appendix A and peruse the best practice titles from each
chapter. If you have been programming for any length of time, you
will probably find yourself thinking: “Yes, I do that,” and “Uh-huh,
we’ve got that one covered.” Great! I would still encourage you to
read what I’ve got to say on those topics, as you might be able to
deepen your knowledge or learn new techniques. In any case, a
quick review of the appendix will allow you to identify areas that are

,ch00.14275 Page xii Friday, June 15, 2001 5:45 PM

xiii

new to you, or perhaps strike a chord, as in “Oh my gosh, that
program I wrote last week does exactly what Steven says to avoid.
Better check that out!”

3. Dive into individual chapters or best practices within chapters. Read a
best practice, wrestle with it, if necessary, to make sure that you
really, truly agree with it. And then apply that best practice. This isn’t
an academic exercise. You will only truly absorb the lesson if you
apply it to your code—if you have a problem or program that can be
improved by the best practice.

If you are new to programming or new to PL/SQL, you will certainly also
benefit greatly from a cover-to-cover reading of the text. In this case, don’t
try to fully absorb and test out every best practice. Instead, read and think
about the best practices without the pressure of applying each one. When
you are done, try to picture the best practices as a whole, reinforcing the
following themes:

• I want to write code that I—and others—can easily understand and
change as needed.

• The world is terribly complex, so I should strive to keep my code sim-
ple. I can then meet that complexity through carefully designed inter-
action between elements of my code.

Then you will be ready to go back to individual chapters and deepen your
understanding of individual best practices.

The other crucial way to take advantage of this book is to use the code
provided on the companion web site. See the later section “About the
Code,” for detailed information on the software that will help you bring
your best practices to life.

Not All Best Practices Are
Created Equal
This book contains about 120 distinct recommendations. I could have
included many, many more. In fact, I filled up a Rejects document as I
wrote the book. Following the proven, “top-down” approach, I first came
up with a list of best practices in each area of the language. Then I went
through each area, filling in the descriptions, examples, and so on. As I
did this, I encountered numerous “best practices” that surely were the
right way to do things. The reality, however, is that few people would
ever bother to remember and follow them, and if they did bother, it
would not make a significant difference in their code.

,ch00.14275 Page xiii Friday, June 15, 2001 5:45 PM

xiv

I had realized, you see, that not all best practices are created equal. Some
are much, much more important than others. And some are just better left
out of the book, so that readers aren’t distracted by “clutter.” I hope that
the result—this book—has an immediate and lasting impact. But even
among the best practices I didn’t reject, some stand out as being espe-
cially important—so I’ve decided to award these best practices the
following prizes:

Grand Prize
SQL-00: Establish and follow clear rules for how to write SQL in your
application. (See Chapter 6.)

First Prize
MOD-01: Encapsulate and name business rules and formulas behind
function headers. (See Chapter 7.)

Second Prize: Two Winners
EXC-00: Set guidelines for application-wide error handling before you
start coding. (See Chapter 5.)

PKG-02: Provide well-defined interfaces to business data and func-
tional manipulation using packages. (See Chapter 8.)

Third Prize: Four Winners
MOD-03: Limit execution section sizes to a single page using modular-
ization. (See Chapter 7.)

DAT-15: Expose package globals using “get and set” modules. (See
Chapter 3.)

DEV-03: Walk through each other’s code. (See Chapter 1.)

STYL-09: Comment tersely with value-added information. (See
Chapter 2.)

If you follow each of these “best of the best” practices, you will end up
with applications that are the joy and envy of developers everywhere!

About the Code
The best way to learn how to write good code is by analyzing and
following examples. Almost every best practice offered in this book
includes a code example, both in the text and in downloadable form from
the Oracle PL/SQL Best Practices site, available through the O’Reilly &
Associates site at:

http://www.oreilly.com/catalog/orbestprac

,ch00.14275 Page xiv Friday, June 15, 2001 5:45 PM

xv

To locate the code for your best practice, simply enter the best practice
identifier, such as BIP-10, in the search field. You will then be directed to
the associated code. You can also browse the site by topic area. You can
even offer your own insights about PL/SQL best practices, so I encourage
you to visit and contribute.

As a rule, I will follow my own best practices in these examples (unless
the point of the code is to demonstrate a “bad practice”!). So, for example,
you will rarely see me using DBMS_OUTPUT.PUT_LINE, even though this
“show me” capability is needed in many programs. As I mention in BIP-01,
you should avoid calling this procedure directly; instead, build or use an
encapsulation over DBMS_OUTPUT.PUT_LINE. So rather than seeing code
like this:

DBMS_OUTPUT.PUT_LINE (l_date_published);

you will instead encounter a call to the “pl” or “put line” procedure:

pl (l_date_published);

I also make many references to PL/Vision packages. PL/Vision is a code
library, consisting of more than 60 packages that offer 1,000-plus proce-
dures and functions to perform a myriad of useful tasks in PL/SQL
applications. I have deposited much of what I have learned in the last five
years about PL/SQL into PL/Vision, so I naturally return to it for exam-
ples. Any package mentioned in this book whose name starts with “PLV”
is a PL/Vision package.

A completely free, “lite” version of PL/Vision is available from the PL/SQL
Pipeline Archives at:

http://www.revealnet.com/Pipelines/PLSQL/archives.htm

Select the “RevealNet Active PL/SQL Knowledge Base” from the list.
(You might also like to download and try out the other code you’ll find
there.) A commercial version of PL/Vision (with more packages and
functionality than the lite version) is currently available inside the
RevealNet Active PL/SQL Knowledge Base (http://www.revealnet.com).

Whenever possible, the code I provide for the book can be used to
generate best-practice-based code and as prebuilt, generalized compo-
nents in your applications, code that you can use without having to make
any modifications.

The code examples offer programs that you can use to both generate and
directly implement those best practices. In some cases, the programs are
rather simple “prototypes”; they work as advertised, but you will prob-

,ch00.14275 Page xv Friday, June 15, 2001 5:45 PM

xvi

ably want to make some changes before you put them into production
applications.

And you should most certainly test every single program you use from
Oracle PL/SQL Best Practices ! I have run some tests, and my wonderful
technical reviewers have also exercised the code. In the end, however, if
the code goes into your application, you are responsible for making sure
that it meets your needs.

Other Resources
This book is intended to complement numerous other resources for
PL/SQL developers. It is, to my knowledge, the first collection of best
practices specifically for the Oracle PL/SQL language. On the other
hand, it doesn’t stand on its own as a comprehensive resource, either for
PL/SQL, in particular, or for Oracle application development, in general.

What follows is by no means an exhaustive list of resources for devel-
opers. However, I find that a 15-page bibliography is more intimidating
than it is helpful. So I offer this short list of the resources that I have
recently found most useful and interesting:

Code Complete by Steven McConnell (Microsoft Press)
A classic text, this “practical handbook of software criticism” should
be on the bookshelf of every developer or at least in your team’s
library. Chock-full of practical advice for constructing code, it shows
examples in many languages, including Ada, which is enough like
PL/SQL to make learning from McConnell a breeze. Don’t start
coding without it! The web site for Steven McConnell’s consulting
practice, www.construx.com, is also packed with lots of good
advice.

Refactoring by Martin Fowler (Addison Wesley)
According to this book, “refactoring is the process of changing a
software system in such a way that it doesn’t alter the external of the
code, yet improves its internal structure.” Sound great, or what? This
excellent book uses Java as its example language, but the writing is
clear and the Java straightforward. There is much to apply here to
PL/SQL programming.

Extreme Programming Explained, by Kent Beck (Addison Wesley)
This book is a highly readable and concise introduction to Extreme
Programming (XP), a lightweight software development methodology.
Visit http://www.xprogramming.com or http://www. extremeprogram-

,ch00.14275 Page xvi Friday, June 15, 2001 5:45 PM

xvii

ming.org for a glimpse into the world of this interesting approach to
development.

And then, of course, there is my own oeuvre, the Oracle PL/SQL Series
from O’Reilly & Associates, which includes:

Oracle PL/SQL Programming, with Bill Pribyl
The complete language reference for Oracle PL/SQL.

Oracle PL/SQL Programming: Guide to Oracle8i Features
A companion volume describing the Oracle8i additions to the PL/SQL
language.

Oracle PL/SQL Developer’s Workbook, with Andrew Odewahn
A workbook containing problems (and accompanying solutions) that
will test your knowledge of Oracle PL/SQL language features.

Oracle Built-in Packages, with Charles Dye and John Beresniewicz
A complete reference to the many built-in packages provided by
Oracle Corporation.

Advanced Oracle PL/SQL Programming with Packages
A description of how to write your own PL/SQL packages, including a
large number of packages you can use in your own programs.

Oracle PL/SQL Language Pocket Reference, with Bill Pribyl and Chip
Dawes

A quick reference to the PL/SQL language syntax.

Oracle PL/SQL Built-ins Pocket Reference, with John Beresniewicz and
Chip Dawes

A quick reference to the calls to the Oracle built-in functions and
packages.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates filenames, directory names, and URLs. It’s also used for
emphasis and for the first use of a technical term.

Bold
Used when referring, by number, to a best practice described in this
book (e.g., BIP-04).

Constant width
Indicates examples and to show the contents of files and the output of
commands.

,ch00.14275 Page xvii Friday, June 15, 2001 5:45 PM

xviii

Constant width bold
Indicates code entered by a user (e.g., via SQL*Plus) or to highlight
code lines being discussed.

UPPERCASE
In code examples, indicates PL/SQL keywords.

lowercase
In code examples, indicates user-defined items (e.g., variables).

The owl icon designates a note, which is an important aside to the
nearby text. For example, I’ll use this icon when suggesting the use
of an alternative feature.

The turkey icon designates a warning relating to the nearby text.
For example, I’ll use this icon when a particular feature might
affect performance or preclude use of some other feature.

Comments and Questions
Please address comments and questions concerning this book to the
publisher:

O’Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any
additional information. You can access this page at:

http://www.oreilly.com/catalog/orbestprac

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, software, Resource
Centers, and the O’Reilly Network, see the O’Reilly web site at:

http://www.oreilly.com

,ch00.14275 Page xviii Friday, June 15, 2001 5:45 PM

xix

Acknowledgments
Thanks go, first of all, to my editor of six years at O’Reilly & Associates,
Deborah Russell. She got me off the dime on this project and helped me
turn it around in record time (I started doing serious writing on this book
in October 2000 and finished it up in January 2001). It was, once again, a
real pleasure working with you, Debby!

Thanks as well to the other O’Reilly people who turned this book into a
finished product: Mary Anne Weeks Mayo, the production editor; Ellie
Volckhausen, who designed the cover; and Caroline Senay, the editorial
assistant who helped in many ways throughout the project.

Many outstanding Oracle developers and DBAs contributed their time and
expertise, through technical review, code samples, or writing. My deep-felt
gratitude goes out to: John Beresniewicz, Rohan Bishop, Dick Bolz, Dan
Clamage, Bill Caulkins, Dan Condon-Jones, Fawwad-uz-Zafar Siddiqi,
Gerard Hartgers, Edwin van Hattem, Dwayne King, Darryl Hurley,
Giovanni Jaramillo, Vadim Loevski, Pavel Luzanov, Matthew MacFarland,
Jeffrey Meens, James “Padders” Padfield, Rakesh Patel, Bill Pribyl, Andre
Vergison (the brains behind PL/Formatter), and Solomon Yakobson. This
book benefited, in particular, from a reworking of best practice titles by
John Beresniewicz, close readings of many chapters by Dan Clamage
(whose excellent comments on certain best practices I’ve included as side-
bars in the text), and the contribution of trigger best practices by Darryl
Hurley.

Oracle PL/SQL Best Practices is a much improved text as a result of all of
your assistance, my friends. Any errors, on the hand, are entirely my fault
and responsibility.

I would also like to thank my wife, Veva, for volunteering to pick up Eli
from Jordan’s house so that I could stay behind and write these acknowl-
edgments (oh, and also for adding layer upon layer of meaning and
happiness to my life).

,ch00.14275 Page xix Friday, June 15, 2001 5:45 PM

,ch00.14275 Page xx Friday, June 15, 2001 5:45 PM

1

Chapter1

1
1.The Development

Process

To do your job well, you need to be aware of, and to follow, both “little”
best practices—very focused tips on a particular coding technique—and
“big” best practices. This chapter offers some suggestions on the big
picture: how to write your code as part of a high-quality development
process.

My objective isn’t to “sell” you on any particular development method-
ology (though I must admit that I am most attracted to so-called
“lightweight” methodologies such as Extreme Programming and SCRUM).*

Instead, I’ll remind you of basic processes you should follow within any
big-picture methodology.

In other words, if you (or your methodology) don’t follow some form of
the best practices in this chapter, you are less likely to produce high-
quality, successful software. I don’t (with perhaps a single exception)
suggest a specific path or tool. You just need to make sure you’ve got
these bases covered.

DEV-01: Set standards and guidelines before writing any
code.

These standards and guidelines would, if I had my way, include many or all of the
best practices described in this book. Of course, you need to make your own deci-

* This chapter contains numerous references to Extreme Programming resources. For more in-
formation about SCRUM, “a process for empirically managing product development and im-
proving team productivity,” visit http://www.controlchaos.com. Note that SCRUM isn’t an
acronym, but a reference to the “scrum” in the sport of rugby, a metaphor for the daily meet-
ings that are the core of the SCRUM methodology.

,ch01.14401 Page 1 Friday, June 15, 2001 5:45 PM

2 Chapter 1: The Development Process

sions about what is most important and practical in your own particular
environment.

Key areas of development for which you should proactively set standards are:

• Selection of development tools : You should no longer be relying on SQL*Plus
to compile, execute, and test code; on a basic editor like Notepad to write the
code; or on EXPLAIN PLAN to analyze application performance. Software
companies offer a multitude of tools (with a wide range of functionality and
price) that will help dramatically improve your development environment.
Decide on the tools to be used by all members of the development group.

• How SQL is written in PL/SQL code: The SQL in your application can be the
Achilles’ heel of your code base. If you aren’t careful about how you place
SQL statements in your PL/SQL code, you’ll end up with applications that are
difficult to optimize, debug, and manage over time.

• An exception handling architecture : Users have a hard time understanding
how to use an application correctly, and developers have an even harder time
debugging and fixing an application if errors are handled inconsistently (or
not at all). The best way to implement application-wide, consistent error han-
dling is to use a standardized package according to specific guidelines.

• Processes for code review and testing: There are some basic tenets of program-
ming that must not be ignored. You should never put code into production
without having it reviewed by one or more other developers, and without
performing exhaustive testing. Astonishingly, many (if not most) PL/SQL
development shops have neither standard, mandatory code reviews nor a
strict testing regimen.

Best practices throughout this chapter and the rest of the book address these
crucial aspects of software development. You will also find many relevant exam-
ples throughout the book.

Benefits

By setting clear standards and guidelines for at least the areas just listed (tools,
SQL, error handling, and code review and testing), you ensure a foundation that
will allow you to be productive and to produce code of reasonable quality.

Challenges

The deadline pressures of most applications mitigate against taking the time up
front to establish standards, even though we all know that such standards are
likely to save time down the line.

DEV-02: Ask for help after 30 minutes on a problem.

Following this simple piece of advice will probably have more impact on your
code than anything else in this book!

How many times have you stared at the screen for hours, trying this and that in a
vain attempt to fix a problem in your code? Finally, exhausted and desperate, you
call over your cubicle wall: “Hey, Melinda, could you come over here and look at
this?” When Melinda reaches your cube she sees in an instant what you, after
hours, still could not see. Gosh, it’s like magic!

,ch01.14401 Page 2 Friday, June 15, 2001 5:45 PM

The Development Process 3

Except it’s not magic and it’s not mysterious at all. Remember: humans write soft-
ware, so an understanding of human psychology is crucial to setting up processes
that encourage quality software. We humans (especially the males of the species)
like to get things right, like to solve our own problems, and do not like to admit
that we don’t know what is going on. Consequently, we tend to want to hide our
ignorance and difficulties. This tendency leads to many wasted hours, high levels
of frustration, and, usually, nasty, spaghetti code.

Team leaders and development managers need to cultivate an environment in
which we are encouraged to admit what we do not know, and ask for help earlier
rather than later. Ignorance isn’t a problem unless it is hidden from view. And by
asking for help, you validate the knowledge and experience of others, building the
overall self-esteem and confidence of the team.

There is a good chance that if you spend 30 minutes fruitlessly analyzing your
code, two more hours will not get you any further along to a solution. Instead, get
in the habit of sharing your difficulty with a coworker (preferably an assigned
“buddy,” so the line of communication between the two of you is officially
acknowledged and doesn’t represent in any way acknowledgement of a failure).

Example

Programmers are a proud and noble people. We don’t like to ask for help; we like
to bury our noses in our screen and create. So the biggest challenge to getting
people to ask for help is to change behaviors. Here are some suggestions:

• The team leader must set the example. When I have the privilege to manage a
team of developers, I go out of my way to ask each and every person on that
team for help on one issue or another. If you are a coach to other teams of
developers, identify the programmer who is respected by all others for her
expertise. Then convince her to seek out the advice of others. Once the
leader (formal or informal) shows that it is OK to admit ignorance, everyone
else will gladly join in.

• Post reminders in work areas, perhaps even individual cubicles, such as
“STUCK? ASK FOR HELP” and “IT’S OK NOT TO KNOW EVERYTHING.” We
need to be reminded about things that don’t come naturally to us.

Benefits

Problems in code are identified and solved more rapidly. Fewer hours are wasted
in a futile hunt for bugs.

Knowledge about the application and about the underlying software technology is
shared more evenly across the development team.

Challenges

The main challenge to successful implementation of this best practice is psycho-
logical: don’t be afraid to admit you don’t know something or are having trouble
figuring something out.

,ch01.14401 Page 3 Friday, June 15, 2001 5:45 PM

4 Chapter 1: The Development Process

Resources

Peopleware: Productive Projects and Teams, by Tom DeMarco and Timothy Lister
(Dorset House). This is a fantastic book that combines deep experience in
project management with humor and common sense.

DEV-03: Walk through each other’s code.

Software is written to be executed by a machine. These machines are very, very
fast, but they aren’t terribly smart. They simply do what they are told, following
the instructions of the software we write, as well as the many other layers of soft-
ware that control the CPU, storage, memory, etc.

It is extremely important, therefore, that we make sure the code we write does the
right thing. Our computers can’t tell us if we missed the mark (“garbage in,
garbage out” or, unfortunately, “garbage in, gospel out”). The usual way we vali-
date code is by running that code and checking the outcomes (well, actually, in
most cases we have our users run the code and let us know about failures). Such
tests are, of course, crucial and must be made. But they aren’t enough.

It is certainly possible that our tests aren’t comprehensive and leave errors unde-
tected. It is also conceivable that the way in which our code was written produces
the correct results in very undesirable ways. For instance, the code might work “by
accident” (two errors cancel themselves out).

A crucial complement to formal testing of code is a formalized process of code
review or walk-through. Code review involves having other developers actually
read and review your source code. This review process can take many different
forms, including:

• The buddy system: Each programmer is assigned another programmer to be
ready at any time to look at his buddy’s code and to offer feedback.

• Formal code walkthroughs : On a regular basis (and certainly as a “gate”
before any program moves to production status), a developer presents or
“walks through” her code before a group of programmers.

• Pair programming : No one codes alone! Whenever you write software, you
do it in pairs, where one person handles the tactical work (thinks about the
specific code to be written and does the typing), while the second person
takes the strategic role (keeps an eye on the overall architecture, looks out for
possible bugs, and generally critiques—always constructively). Pair program-
ming is an integral part of Extreme Programming.

Benefits

Overall quality of code increases dramatically. The architecture of the application
tends to be sounder, and the number of bugs in production code goes way down.
A further advantage is that of staff education—not just awareness of the project,
but also an increase in technological proficiency due to the synergistic effect of
working together.

Challenges

The development manager or team leader must take the initiative to set up the
code review process and must give developers the time (and training) to do it

,ch01.14401 Page 4 Friday, June 15, 2001 5:45 PM

The Development Process 5

right. Also, code review seems to be the first casualty of deadline crunch. Further,
a new PL/SQL project might not have the language expertise available on the team
to do complete, meaningful walkthroughs.

Resources

Handbook of Walkthroughs, Inspections, and Technical Reviews, by Daniel
Freedman and Gerald M. Weinberg (Dorset House). Now in its third edition,
this book uses a question-and-answer format to show you exactly how to
implement reviews for all sorts of product and software development.

Extreme Programming Explained, by Kent Beck (Addison Wesley). The first book
on Extreme Programming offers many insights into pair programming.

Extreme Programming Installed, by Ron Jeffries, Ann Anderson, and Chet
Hendrickson (Addison Wesley). Focuses on how to implement Extreme
Programming in your environment.

DEV-04: Validate standards against source code in the
database.

This book is chock-full of recommendations, standards, guidelines, and so on. The
usual immediate, visceral response to all of these shoulds is: how can I possibly
remember them? And how can I make sure that any of our developers actually
follow through on their “shoulds?”

PL/SQL offers one big advantage in this area: all source code is stored in the data-
base and is made available through data dictionary views (ALL_SOURCE, USER_
SOURCE, DBA_SOURCE). Oracle also maintains additional information about
code, such as dependencies, in other views. You can—and should—fairly easily
validate at least some of the standards that you set by running queries against
these views.

Here are some things you can do with this information:

• Set up a weekly job (via DBMS_ JOB) to identify any programs that have
changed, have been created, or have been removed in the past week. Pub-
lish this information as HTML on an intranet so developers can, at any time,
be aware of these changes. This approach can improve reuse within your
organization, for example.

• Provide queries, preferably organized within programs in a package, that
developers can run (or, again, can be run as scheduled, weekly jobs) to check
to see how well their code complies with standards.

Executing, as well as writing, queries against data dictionary
views (particularly the dependency-related views) can be time-
consuming. Be patient!

,ch01.14401 Page 5 Friday, June 15, 2001 5:45 PM

6 Chapter 1: The Development Process

Example

Suppose we have agreed that individual developers should never call RAISE_
APPLICATION_ERROR directly. Instead they should call the raise procedure of the
standard error-handling package (see EXC-04).

Here is a simple query that identifies all those program units (and lines of code)
that contain this “off limits” built-in:

SELECT name, line || ' – ' || text code
 FROM ALL_SOURCE
 WHERE UPPER (text) LIKE '%RAISE_APPLICATION_ERROR%'
 ORDER BY name, line;

This answers a common question: “does my code have X in it?” Rather than
executing these standalone queries over and over again, you will find it worth-
while to encapsulate such a query inside a packaged interface, such as this
“standards validation” package:

CREATE OR REPLACE PACKAGE valstd
IS
 PROCEDURE progwith (str IN VARCHAR2);
 PROCEDURE pw_rae;
END valstd;
/

You can now call valstd.pw_rae to show all the “programs with” RAISE_
APPLICATION_ERROR (as you can easily see from the valstd package body). You
can also call valstd.progwith to search for other strings. If, therefore, You’ve a
standard that developers should never hard-code –20,000 error numbers, issue this
command:

SQL> exec valstd.progwith ('-20')

and view what is likely to be a superset of all such instances.

Another kind of standard that might be set within an organization is that applica-
tion code should never reference a table or view directly but instead always go
through an encapsulation package (SQL-01). Here is a query that identifies all
program units that violate this rule:

SELECT owner || '.' || name refs_table,
 referenced_owner || '.' ||
 referenced_name table_referenced
 FROM all_dependencies
 WHERE owner LIKE UPPER ('&1')
 AND TYPE IN ('PACKAGE',
 'PACKAGE BODY',
 'PROCEDURE',
 'FUNCTION')
 AND referenced_type IN ('TABLE', 'VIEW')
 ORDER BY owner,
 name,
 referenced_owner,
 referenced_name;

,ch01.14401 Page 6 Friday, June 15, 2001 5:45 PM

The Development Process 7

Benefits

You don’t have to rely solely on “manual” walkthroughs of code to validate
compliance with group standards.

Code analysis and code “mining” (extracting information from/about source code)
can be automated and tightly integrated into the development process.

Challenges

You need to design and build the analysis code and then integrate these checks
into your ongoing development effort.

Resources

reftabs.sql : Query identifying direct references to tables and views.

valstd.pkg : Simple prototype package offering an interface to identify the pres-
ence of unwanted text in source code.

DEV-05: Generate code whenever possible and appropriate.

Life is short—and way too much of it is consumed by time spent in front of a
computer screen, moving digits with varying accuracy over the keyboard. Seems to
me that we should be aggressive about finding ways to build our applications with
an absolute minimum of time and effort while still producing quality goods. A key
component of such a strategy is code generation: rather than write the code your-
self, you let some other piece of software write the code for you.

Code generation is particularly useful when you have defined standards you want
everyone to follow. You can try to get developers to conform to those standards
with a “stick” approach: follow the standards, or else! But a more effective way to
get the often anarchistic, or at least highly individualistic, programmer to follow
standards is to make it easier to follow than not follow those guidelines. See the
“Examples” section for specific demonstrations of this “carrot” approach.

In addition to helping to implement standards, code generation comes in handy
when you have to write code that is repetitive in structure (i.e., it can be
expressed generally by a pattern). For example, the kind of code you write to
determine if there is at least one row in a table for a given primary key is the same
regardless of the table (and primary key). Wouldn’t it be nice to be able to call a
procedure that queries the table structure and key from the data dictionary and
generates the function?

How do you generate code? You can pick from one of these three options:

• Write your own custom query or program to meet specific needs. The “Exam-
ples” section steps you through a simple demonstration of how to go about
this.

• Use a commercial tool that focuses on code generation. The “Resources” sec-
tion offers a list of known code-generation tools for PL/SQL developers.

• Run relatively constrained, functionally specific generation utilities that others
have written (noncommercial, freeware). The “Resources” section offers a list
of generation utilities available on the Oracle PL/SQL Best Practices web site.

,ch01.14401 Page 7 Friday, June 15, 2001 5:45 PM

8 Chapter 1: The Development Process

Examples

Let’s explore these three options for generation.

First, we have the classic “SQL generating SQL.” Suppose that I want to drop all
the tables in my schema. There is no “drop all” command. Instead, I throw
together a query against USER_TABLES whose output is, in fact, a series of DROP
statements, and then execute that output as a spooled file in SQL*Plus:

SET PAGESIZE 0
SET FEEDBACK OFF
SELECT 'DROP TABLE ' || table_name || ';'
 FROM user_tables
 WHERE table_name LIKE UPPER ('&1%')

SPOOL drop.cmd
/
SPOOL OFF
@drop.cmd

Now, let’s move on to PL/SQL-based generation. My team is about to start a large-
scale development effort. We will need to perform retrievals of entire rows of data
for many different tables, based on their various (but single) primary key columns.
I want to do this in a way that conforms to all of our organization’s standards
(exception handling with logging, use, and encapsulation of the implicit query that
offers best performance, etc.). Rather than write a memo to this effect, I build a
procedure:

CREATE OR REPLACE PROCEDURE genlookup (tab IN VARCHAR2, col IN VARCHAR2)
IS
 l_ltab VARCHAR2 (100) := LOWER (tab);
 l_lcol VARCHAR2 (100) := LOWER (col);
BEGIN
 pl ('CREATE OR REPLACE FUNCTION ' || l_ltab || '_row_for (');
 pl (' ' ||
 l_lcol || '_in IN ' || l_ltab || '.' || l_lcol || '%TYPE)');
 pl (' RETURN ' || l_ltab || '%ROWTYPE');
 pl ('IS');
 pl (' retval ' || l_ltab || '%ROWTYPE;');
 pl ('BEGIN');
 pl (' SELECT * INTO retval');
 pl (' FROM ' || l_ltab);
 pl (' WHERE ' || l_lcol || ' = ' || l_lcol || '_in;');
 pl (' RETURN retval;');
 pl ('EXCEPTION');
 pl (' WHEN NO_DATA_FOUND THEN');
 pl (' RETURN NULL;');
 pl (' WHEN OTHERS THEN');
 pl (' err.log;');
 pl ('END ' || l_ltab || '_row_for;');
 pl ('/');
END;
/

,ch01.14401 Page 8 Friday, June 15, 2001 5:45 PM

The Development Process 9

And I can then use this procedure as follows:

SQL> exec genlookup ('book', 'isbn')
CREATE OR REPLACE FUNCTION book_row_for (
 isbn_in IN book.isbn%TYPE)
 RETURN book%ROWTYPE
IS
 retval book%ROWTYPE;
BEGIN
 SELECT * INTO retval
 FROM book
 WHERE isbn = isbn_in;
 RETURN retval;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN NULL;
 WHEN OTHERS THEN
 err.log;
END book_row_for;
/

You can get much more sophisticated in your generation efforts; you can, for
example, look up the primary key column(s) in the ALL_CONS_COLUMNS data
dictionary view, instead of having to specify the WHERE clause column. You have
to decide for yourself where to draw the line: do you really need that flexibility or
does it just look like lots of fun to build?

Benefits

You can build your applications faster; utilities can generate software lots faster
than you can type it.

You will improve the quality of your application code: assuming that your gener-
ator program has been well-designed and tested, it will generate bug-free code
with each use.

As your underlying data structures change, you can regenerate program units that
work with those data structures. Much less time is spent upgrading existing code.

Challenges

Building anything but the most crude generators involves a level of abstraction
and complexity higher than the usual task tackled by most developers.

Resources

Commercial Code-Generation Tools

http://www.oracle.com : Oracle Designer from Oracle Corporation generates code
in a variety of languages.

http://www.revealnet.com : RevealNet’s PL/Generator generates comprehensive
encapsulation packages for tables and views.

PLVgen: RevealNet’s Active PL/SQL Knowledge Base offers PLVgen, a package that
generates functions, procedures, cursor FOR loops and other code elements.
Visit the PL/SQL Pipeline archives as described in the Preface.

,ch01.14401 Page 9 Friday, June 15, 2001 5:45 PM

10 Chapter 1: The Development Process

Most CASE/designer tools offer some level of code generation. Visit the web sites
of Quest, Computer Associates, Precise, BMC, Embarcadero, and so on to
check out their respective products.

Code-Generation Utilities

genlookup.pro : Generates a lookup procedure that returns a row in a table.

msginfo.pkg : Generates a package with definitions for all application-specific
exceptions.

genmods.pkg : Generates standard formatted functions.

DEV-06: Set up and use formal unit testing procedures.

A unit test is a test a developer creates to ensure that his or her “unit,” usually a
single program, works properly. A unit test is very different from a system or func-
tional test; these latter types of tests are oriented to application features or overall
testing of the system. You can’t properly or effectively perform a system test until
you know that the individual programs behave as expected.

So, of course, you would therefore expect that programmers do lots of unit testing
and have a correspondingly high level of confidence in their programs. Ah, if only
that were the case! The reality is that programmers generally perform an inade-
quate number of inadequate tests and figure that if the users don’t find a bug,
there is no bug. Why does this happen? Let me count the ways:

The psychology of success and failure
We are so focused on getting our code to work correctly that we generally
shy away from bad news, from even wanting to take the chance of getting
bad news. Better to do some cursory testing, confirm that it seems to be
working OK, and then wait for others to find bugs, if there are any (as if there
were any doubt).

Deadline pressures
Hey, it’s Internet time! Time to market determines all. We need everything
yesterday, so let’s be just like Microsoft and Netscape: release pre-beta soft-
ware as production and let our users test/suffer through our applications.

Management’s lack of understanding
IT management is notorious for not really understanding the software devel-
opment process. If we aren’t given the time and authority to write (write, that
is, in the broadest sense, including testing, documentation, refinement, etc.)
our own code properly, we will always end up with buggy junk that no one
wants to admit ownership of.

Overhead of setting up and running tests
If it’s a big deal to write and run tests, they won’t get done. I don’t have time,
and there is always something else to work on. One consequence of this
point is that more and more of the testing is handed over to the QA depart-
ment, if there is one. That transfer of responsibility is, on the one hand, posi-
tive. Professional quality assurance professionals can have a tremendous
impact on application quality. Yet we developers must take and exercise

,ch01.14401 Page 10 Friday, June 15, 2001 5:45 PM

The Development Process 11

responsibility for unit testing our own code, otherwise, the testing/QA pro-
cess is much more frustrating and extended.

Ego
 I wrote it; therefore it works the way I intended it to work.

The bottom line is that our code almost universally needs more testing. And the
best way to do unit testing is with a formal procedure built around software that
makes testing as easy and as automated as possible. I can’t help with deadline
pressures, and my ability to improve your manager’s understanding of the need to
take more time to test is limited. I can, on the other hand, offer you a “frame-
work”—a set of processes and code elements—that can greatly improve your
ability to perform high quality unit testing.

In the spring of 2000, I studied Extreme Programming (http://www.xprogram-
ming.com) and its associated concepts on unit testing (most widely used in its Java
interpretation, the open source JUnit). I then adapted these ideas to the world of
PL/SQL, creating utPLSQL, the unit testing framework for Oracle PL/SQL.

By the time this book is published, there may be other unit testing facilities avail-
able for PL/SQL. As a starting point for exploring the implementation of formal
unit tests for your code, however, I encourage you to visit http://oracle.oreilly.com/
utplsql.

Example

With utPLSQL, you build a test package for your standalone or packaged
programs. You then ask utPLSQL to run the tests in your test package, and display
the results. When you use utPLSQL, you don’t have to analyze the results and
determine whether your tests succeeded or failed; the utility automatically figures
that out for you.

Suppose, for example, that I have built a simple alternative to the SUBSTR func-
tion called betwnstr: it returns the substring found between the specified start and
end locations in the string. Here it is:

CREATE OR REPLACE FUNCTION betwnstr (
 string_in IN VARCHAR2,
 start_in IN INTEGER,
 end_in IN INTEGER
)
 RETURN VARCHAR2
IS
BEGIN
 RETURN (
 SUBSTR (
 string_in,
 start_in,
 end_in – start_in + 1
)
);
END betwnstr;
/

,ch01.14401 Page 11 Friday, June 15, 2001 5:45 PM

12 Chapter 1: The Development Process

To test this function, I want to pass in a variety of inputs, as shown in this table:

From this table (which, of course, doesn’t yet cover all the variations needed for a
comprehensive test), I build test cases for each entry in my test package’s unit test
procedure:

CREATE OR REPLACE PACKAGE BODY ut_betwnstr
IS
 PROCEDURE ut_betwnstr IS
 BEGIN
 utassert.eq (’Typical valid usage’,
 betwnstr (string_in => ’abcdefg', start_in => 3, end_in => 5),
 'cde');

 utassert.isnull ('NULL start',
 betwnstr (string_in=> 'abcdefg',
 start_in => NULL,
 end_in => 5));

 utassert.isnull ('NULL end',
 betwnstr (string_in=> 'abcdefg',
 start_in => 2,
 end_in => NULL));

 utassert.isnull ('End smaller than start',
 betwnstr (string_in => 'abcdefg', start_in => 5, end_in => 2));

 utassert.eq ('End larger than string length',
 betwnstr (string_in=> 'abcdefg',
 start_in => 3,
 end_in => 200),
 'cdefg');

 END ut_betwnstr;
END ut_betwnstr;
/

I call the utAssert procedures so that the results of my tests (my “assertions” that
such and such is true) can be logged automatically with utPLSQL.

String Start End Expected Result

abcdefg 3 (positive
number)

5 (bigger positive number) cde

abcdefg NULL Any NULL

abcdefg Any NULL NULL

abcdefg 5 2 (end smaller than start NULL

abcdefg 3 200 (end larger than string
length)

cdefg

,ch01.14401 Page 12 Friday, June 15, 2001 5:45 PM

The Development Process 13

Then I can run the test and view the results. Here is a run that identifies no errors:

SQL> exec utplsql.test ('betwnstr')
.
> SSSS U U CCC CCC EEEEEEE SSSS SSSS
> S S U U C C C C E S S S S
> S U U C C C C E S S
> S U U C C E S S
> SSSS U U C C EEEE SSSS SSSS
> S U U C C E S S
> S U U C C C C E S S
> S S U U C C C C E S S S S
> SSSS UUU CCC CCC EEEEEEE SSSS SSSS
.
 SUCCESS: "betwnstr"

And here is the output shown when problems arise:

SQL> exec utplsql.test ('betwnstr')
.
> FFFFFFF AA III L U U RRRRR EEEEEEE
> F A A I L U U R R E
> F A A I L U U R R E
> F A A I L U U R R E
> FFFF A A I L U U RRRRRR EEEE
> F AAAAAAAA I L U U R R E
> F A A I L U U R R E
> F A A I L U U R R E
> F A A III LLLLLLL UUU R R EEEEEEE
.
 FAILURE: "betwnstr"
.
UT_BETWNSTR: Typical valid usage; expected "cde", got "cd"
UT_BETWNSTR: IS NULL: NULL start
UT_BETWNSTR: IS NULL: End smaller than start

Benefits

You develop applications faster, with a higher degree of confidence and with
fewer bugs.

It is much easier for other developers to maintain and enhance your code, because
after they make a change, they can run the full suite of tests and confirm that the
program still passes all tests.

Challenges

The only challenge to performing comprehensive unit testing is you! You know
you have to test your code, and you have to test it repeatedly. So take the time to
define your tests within a test package, and use a testing facility to run your tests
for you.

Enlist the help of other developers in your organization to review your unit test
cases and build others. Did you miss anything? Is your test accurate? It is often
difficult for the person who wrote (or is about to write) the code to be objective
about it. You’ll find more about this topic in DEV-07.

,ch01.14401 Page 13 Friday, June 15, 2001 5:45 PM

14 Chapter 1: The Development Process

Resources

http://oracle.oreilly.com/utplsql : To download utPLSQL and to obtain more infor-
mation about its approach to unit testing.

http://www.xprogramming.com : For more general information about Extreme
Programming’s approach to and underlying principles for unit testing.

http://www.extremeprogramming.org : For a wonderfully accessible, web-based
introduction to Extreme Programming.

DEV-07: Get independent testers for functional sign-off.

Individual developers should and must be responsible for defining and executing
unit tests on the programs they write (see DEV-06). Developers should not, on the
other hand, be responsible for overall functional testing of their applications.
There are several reasons for this:

• We don’t own the requirements. We don’t decide when and if the system
works properly. Our users or customers have this responsibility. They need to
be intimately connected with, and drive, the functional tests.

• Whenever we test our code, we follow the “pathways to success” without
ever knowing it. In other words, the mindset we had when we wrote the
code is the same mindset we have when testing the code. Other people, other
eyes, need to run the software in complete ignorance of those pathways. It is
no wonder that unit testing was so successful and yet integration testing has
such problems.

To improve the quality of code that is handed over to customers for testing, your
team leader or development manager should:

• Work with the customer to define the set of tests that must be run success-
fully before an application is considered to be ready for production.

• Establish a distinct testing group—either a devoted Quality Assurance organi-
zation or simply a bunch of developers who haven’t write any of the soft-
ware to be tested.

This extra layer of testing, based on the customer’s own requirements and
performed before the handoff to customers for their “sign off” test, will greatly
improve code quality and customer confidence in the development team.

Example

I spend several days building a really slick application in Oracle Developer (or
Visual Basic or Java or…). It allows users to manage data in a few different tables,
request reports, and so on. I then devote most of a day to running the application
through its paces. I click here, click there, enter good data, enter bad data, find a
bunch of bugs, fix them, and finally hand it over to my main customer, Johanna. I
feel confident in my application. I can no longer break it.

Imagine how crushed I feel (and I bet you can imagine it, because undoubtedly
the same thing has happened to you) when Johanna sits down in front of the
computer, starts up the application, and in no more than three clicks of the mouse

,ch01.14401 Page 14 Friday, June 15, 2001 5:45 PM

The Development Process 15

causes an error window to pop up on the screen. The look she sends my way
(“Why are you wasting my time?”) will stay with me for years.

There is no way for me to convince Johanna that I really, truly did spend hours
testing the application. Why should she believe such a thing? She is then left to
believe I am a totally incompetent tester.

Benefits

Quality of code handed to users for testing is higher, which means the end result
moved to production is of correspondingly higher quality.

Customer confidence in the development organization remains high. This confi-
dence—and the respect that comes with it—makes it easier for developers to
negotiate with customers over the time-versus-quality dilemma so many of us face
in software development.

Challenges

Many small development groups can’t afford (i.e., can’t convince management to
spend the money) to staff a separate QA organization. At a minimum, you must
make sure that customers have defined a clear set of tests. Then distribute the
functional testing load to the developers so that they do not test their own code.

Resources

http://www.well.com/~vision/sqa.html : A gathering place for references related to
the theory and practice of Software Quality Assurance. This site is growing to
include information on Standards and Development Procedures, Product Eval-
uation and Process Monitoring, Configuration Management Monitoring, the
role of SQA in the Product Development Cycle, and Automated Testing Tools.

,ch01.14401 Page 15 Friday, June 15, 2001 5:45 PM

16

Chapter2

2
Coding Style and
Conventions 2.

Software developers are a very privileged bunch. We don’t have to work
in dangerous environments, and our jobs aren’t physically taxing (though
carpal tunnel syndrome is always a threat). We are paid to think about
things, and then to write down our thoughts in the form of code. This
code is then used and maintained by others, sometimes for decades.

Given this situation, I believe we all have a responsibility to write code
that can be easily understood and maintained (and, c’mon, let’s admit our
secret desires, admired) by developers who follow in our footsteps.

Steve McConnell’s http://www.construx.com site, along with his
book, Code Complete (Microsoft Press), offers checklists on coding
style, naming conventions and rules, and module definitions.

STYL-01: Adopt a consistent, readable format that is easy to
maintain.

Your code should have a “signature,” a style that is consistent (all your programs
look the same), readable (anyone can pick up your code and make sense of it),
and maintainable (a minor change in the code shouldn’t require 15 minutes of
reformatting).

Ideally, everyone in your organization would adopt a similar style, so that
everyone can easily understand everyone else’s code. This can be tricky, as
programmers sometimes take a dogmatic approach to such issues as size of inden-
tation and use of whitespace.

,ch02.14530 Page 16 Friday, June 15, 2001 5:45 PM

Coding Style and Conventions 17

You have two options regarding coding style:

• Find or write a set of guidelines, and then try as hard as you can to follow
(and get your group to follow) those guidelines. See the “Resources” section
for a sample document.

• Use a tool to automatically format your code for you. The dominant code for-
matter for PL/SQL is currently PL/Formatter from RevealNet (see “Resources”).
This product is not only available standalone, but is also integrated into many
popular integrated development environments (IDEs).

I strongly recommend that you use PL/Formatter or some other “pretty print” tool.
It is quite liberating to write code without any concern whatsoever for how it
looks: I focus completely on the logical flow and then press a button a moment
later to turn it into readable, attractive code.

Example

Here is a package specification that has some clear problems: all uppercase, no
indentation, no whitespace:

CREATE OR REPLACE PACKAGE OVERDUE_PKG IS
PROCEDURE SET_DAILY_FINE (FINE_IN IN NUMBER);
FUNCTION DAILY_FINE RETURN NUMBER;
FUNCTION DAYS_OVERDUE
(ISBN_IN IN BOOK.ISBN%TYPE)RETURN INTEGER;
FUNCTION FINE (ISBN_IN IN BOOK.ISBN%TYPE)
RETURN INTEGER;
END OVERDUE_PKG;
/

I ran it through PL/Formatter and came up with this:

CREATE OR REPLACE PACKAGE overdue_pkg
IS
 PROCEDURE set_daily_fine (fine_in IN NUMBER);

 FUNCTION daily_fine
 RETURN NUMBER;

 FUNCTION days_overdue (
 isbn_in IN book.isbn%TYPE)
 RETURN INTEGER;

 FUNCTION fine (isbn_in IN book.isbn%TYPE)
 RETURN INTEGER;
END overdue_pkg;
/

Which of these specifications would you prefer to read and maintain?

Benefits

Code can be more effectively reviewed, maintained, and enhanced if it’s well-
formatted and formatted consistently with the rest of your development team.

,ch02.14530 Page 17 Friday, June 15, 2001 5:45 PM

18 Chapter 2: Coding Style and Conventions

Challenges

It’s hard to enforce a coding style among programmers, who can be fiercely
libertarian.

It takes time to produce a comprehensive style document for PL/SQL.

Resources

Recommendations for coding style from Chapter 3 of Oracle PL/SQL Program-
ming, available online at http://www.oreilly.com/oracle/oraclep2/.

http://www.revealnet.com/products/formatter/formatter.htm : For information about
PL/Formatter.

STYL-02: Adopt logical, consistent naming conventions for
modules and data structures.

Adopt and promote standard ways to define names of program elements. Choose
a level of “formality” of naming conventions based on your needs. If, for example,
you have a team of two developers working on a small code base, you can prob-
ably get away with naming conventions that don’t go far beyond “use meaningful
names.” If you are building a massive application involving dozens of developers,
you probably need to define more comprehensive rules.

Here are some general recommendations for conventions:

• Identify the scope of a variable in its name. A global variable can be prefaced
with g_, for example.

• Use a prefix or suffix to identify the types of structures being defined. Con-
sider, for example, declarations of TYPEs: of collections, objects, records, ref
cursors, etc. A standard approach to declaring such a structure is <name>_t.
Types are quite different from variables; you should be able to identify the
difference with a glance.

Déjà vu Code
I wrote and enacted a PL/SQL Coding Standard at a former client’s. After
two years there as a consultant, I moved on to other assignments. A year
later, I returned to the previous client. I was tasked with maintaining a
particular package. Looking at it, I got a strange sense of déjà vu; the code
looked like something I would have written, but I could not remember
having written it. Since it was laid out according to the prescribed standard,
it was easy to locate sections and make the needed changes. I checked the
document header to discover who wrote it, which turned out to be another
fellow there. I asked him about it, and he said that he simply followed the
standard. He liked how so many packages were all consistently organized,
making it a breeze to read and maintain them.

 —Dan Clamage

,ch02.14530 Page 18 Friday, June 15, 2001 5:45 PM

Coding Style and Conventions 19

• Use the same case convention for user-defined types as the standard
datatypes in order to help them stand out. Datatypes (built-in or user-defined)
should follow a different casing rule from variables (such as all uppercase for
types, lowercase for variables).

• Use a readable format for your names. Since PL/SQL isn’t case-sensitive, the
“camel notation” (as in minBalanceRequired), for example, is probably not a
good choice for constructing names. Instead, use separators such as _ (under-
score) to improve readability (as in min_balance_required). While names can
be as long as 30 characters, keep them short, as well as readable.

• Organize like items together. For example, declare record variables together
in the same section. Declare all constants together in another section, sepa-
rated from the previous section by whitespace.

It isn’t possible to provide a comprehensive list of naming conventions in this
book. The particular conventions you choose, furthermore, aren’t nearly as impor-
tant as the fact that you set some standard for naming conventions. See the
“Resources” section for downloadable style guides.

Example

Here is a block of code that reflects no standardization of naming conventions:

CREATE OR REPLACE PROCEDURE showborrowedbooks (
 date_borrowed IN DATE)
IS
 date_returned DATE := SYSDATE;
 mindaysborrowed INTEGER := 10;

 TYPE book_borrowed IS RECORD (
 dateborrowed DATE,
 daysborrowed INTEGER,
 isbn book.isbn%TYPE,
 datedue DATE);

 borrowedbook book_borrowed;

 CURSOR allborrowed IS
 SELECT * FROM borrowed_book
 WHERE returned = 'N';
BEGIN
 IF dateborrowed < datereturned
 THEN
 FOR rec IN allborrowed
 LOOP
 borrowedbook:= rec;

 IF borrowedbook.daysborrowed > mindaysborrowed
 THEN
 pl (borrowedbook.isbn);
 END IF;
 END LOOP;
 END IF;
END showborrowedbooks;

,ch02.14530 Page 19 Friday, June 15, 2001 5:45 PM

20 Chapter 2: Coding Style and Conventions

Here’s that same block of code based on standards. I use underscores in names;
suffixes on parameters, records, and cursors; prefixes to show scope (l_ for local)
and type (c_ for constant). Compare carefully the following item names with those
in the previous example:

CREATE OR REPLACE PROCEDURE show_borrowed_books (
 date_borrowed_in IN DATE)
IS
 c_date_returned CONSTANT DATE := SYSDATE;
 l_min_days_borrowed INTEGER := 10;

 TYPE book_borrowed_rt IS RECORD (
 date_borrowed DATE,
 days_borrowed INTEGER,
 isbn book.isbn%TYPE,
 date_due DATE);

 borrowed_book_rec book_borrowed_rt;

 CURSOR all_borrowed_cur IS
 SELECT * FROM borrowed_book
 WHERE returned = 'N';
BEGIN
 IF date_borrowed_in < c_date_returned
 THEN
 FOR book_rec IN all_borrowed_cur
 LOOP
 borrowed_book_rec := book_rec;

 IF borrowed_book_rec.days_borrowed >
 l_min_days_borrowed
 THEN
 pl (borrowed_book_rec.isbn);
 END IF;
 END LOOP;
 END IF;
END show_borrowed_books;

Now it’s possible to look at any individual part of show_borrowed_books and
make sense of the different kinds of structures manipulated by the program.

Benefits

By setting standards, you don’t have to constantly worry about how to write your
code. Concentrate on the important stuff: the business logic.

Developers come up to speed more quickly on the code base as they transfer into
new groups; they also transfer their knowledge and productivity from one project
to another.

Challenges

Define naming standards that are appropriate to your project (not overly rigid for
the size of the team and complexity of the application).

Get developer buy-in for the conventions. One way to achieve this is to get the
developers themselves to set those conventions.

,ch02.14530 Page 20 Friday, June 15, 2001 5:45 PM

Coding Style and Conventions 21

Check for compliance with conventions (although this is difficult to do). You can
build scripts in PL/SQL and SQL to analyze source code for conformance with
some rules (e.g., “Don’t use fixed-length CHAR declarations.”). Currently, a
comprehensive review must be performed manually; I hope that tools will become
available in the next several years.

Resources

See Steve McConnell’s http://www.construx.com site and his Code Complete book
for naming convention suggestions.

standards.doc : An unfinished draft of some naming and coding standards for
PL/SQL developers; be sure to review and edit this document before using
in your organization.

standards.zip : An HTML-driven comprehensive guide to a set of naming conven-
tions for PL/SQL code (courtesy of Matthew MacFarland).

STYL-03: Standardize module and program headers.

While you should generally keep comments to a minimum in your code (see
STYL-09), it’s extremely important to create and keep current a standard header for
all programs. This header should contain, at a minimum, the following elements:

• Version, author, and copyright information : What is the version of the code?
Who wrote the program, who owns the program, etc.

• Access information : Where is the program stored? On disk in a file? Within the
database under a certain schema?

• Overview : What does this program do?

• Dependencies : What does this program need to have defined, or have access
to, in order to run properly?

• Algorithms : Are any algorithms of special note used in the program? If so,
specify them and/or supply a more detailed description of the theory of oper-
ation (if there is one).

• Scope : What application module(s) was the program written for (if it’s not a
generic library-type of program)? Frequently, packages are backend compo-
nents of a system with a complex frontend. For example, a set of packages
might comprise the Payroll subsystem.

• Modification history : What modifications have been made to the program?
Include a line entry for each change to the program, showing who, when,
and what. Put the entries in date-descending order, so that the most recent
change is at the top.

• Exceptions : What errors might be raised by the program?

You are best off defining this header after the IS or AS keyword in your program
definition. For example:

CREATE OR REPLACE PROCEDURE my_procedure
IS
/*
... header text
*/

,ch02.14530 Page 21 Friday, June 15, 2001 5:45 PM

22 Chapter 2: Coding Style and Conventions

When you put the header inside the program definition, that header is also stored
in the USER_SOURCE data dictionary view, making it accessible to analysis.

Example

Here’s a standard header format that follows an XML-like syntax (see the
“Resources” section for a package that helps you leverage this standardized format
in your development process):

/*
<VERSION>1.0.5</VERSION>
<FILENAME>stdhdr.pkg</FILENAME>
<AUTHOR>Steven Feuerstein</AUTHOR>
<SUMMARY>API to standard headers in code</SUMMARY>
<COPYRIGHT>Steven Feuerstein, 2000</COPYRIGHT>

<OVERVIEW>
 Rather than simply document a standard header
 for programs, this package offers a package-based
 API so that you can easily extract information
 stored in the header.
</OVERVIEW>

<DEPENDENCIES>
 ALL_SOURCE data dictionary view
</DEPENDENCIES>

<EXCEPTIONS>None</EXCEPTIONS>

Modification History
Date By Modification
---------- --------- -------------------------------
<MODIFICATIONS>
06/30/2000 SEF Change to XML-compatible syntax
06/07/2000 SEF Program created
</MODIFICATIONS>
*/

Benefits

You can, at a glance, grasp all the administrative aspects of the program.

An accurate modification history makes it easier to maintain the code.

The various sections can be parsed and stored anywhere as ongoing documenta-
tion (showing the changes the program underwent). This benefit, combined with
capturing the last DDL timestamp, makes for good QA of the production database.

Challenges

If the header isn’t kept up to date, it’s worse than useless: it’s misleading. Most
importantly, developers must update the modification history with every change. If
the code modifications point back to the version comment in the header, that’s
even better.

,ch02.14530 Page 22 Friday, June 15, 2001 5:45 PM

Coding Style and Conventions 23

Resources

stdhdr.pkg : A prototype “standard header” package that generates a standard
header (with an XML-style format) and offers programs to query such headers
from stored code.

STYL-04: Tag module END statements with module names.

Every program (indeed, every block of code; see STYL-06) has an END statement.
You can, and should, append the name of the program to the end statement:

CREATE OR REPLACE PACKAGE BODY <pkgname>
IS
 PROCEDURE <procname> (...)
 IS BEGIN
 ...
 END <procname>;

 PROCEDURE <funcname> (...)
 IS BEGIN
 ...
 END <funcname>;

END <pkgname>;

Example

My package consists of 243 procedures and functions, stretching to over 5,000
lines. Without END labels, I could easily be confronted with code like this:

 END LOOP;
 END;
END;

Yikes! Wouldn’t it be so much better if my code had instead been written like this:

 END LOOP yearly_analysis;
 END best_seller_review;
END book_usage_pkg;

Benefits

This is merely good form for standalone programs. For packaged procedures and
functions with code that goes on for hundreds or thousands of lines, however,
named ENDs are crucial to improving the readability of that package.

STYL-05: Name procedures with verb phrases and functions
with noun phrases.

We build procedures to join together (and run) a series of logically related execut-
able statements. The name of the procedure should reflect what those statements
do, and should be in the form of a verb phrase, as in:

PROCEDURE calculate_totals (...);
PROCEDURE display_favorite_flavors (...);

,ch02.14530 Page 23 Friday, June 15, 2001 5:45 PM

24 Chapter 2: Coding Style and Conventions

A function executes one or more statements with the express intent of returning a
value. The name of a function should describe what is being returned and be in
the form of a noun phrase, as in:

FUNCTION total_salary (...) RETURN NUMBER;
FUNCTION book_title (...) RETURN VARCHAR2;

You might also consider standardizing elements of your procedures’ verb phrases;
standard prefixes can indicate the type of operation. Here are some example:

ins_
Inserts something

get_
Selects something

del_
Deletes something

upd_
Updates something

chk_
Validates something

Example

The following table shows some bad names for procedures and functions:

Benefits

The more accurately a name reflects the purpose and usage of a program, the
easier it is to understand code that uses that program.

Challenges

Enumerate the kinds of verb and noun phrases you might use repeatedly, and
standardize a set of prefixes for them.

STYL-06: Self-document using block and loop labels.

While PL/SQL labels (identifiers within double angle brackets, such as <<yearly_
analysis>>) are most often associated with GOTOs and are therefore disdained,
they can be a big help in improving the readability of code.

Name What’s Wrong? Better Name

PROCEDURE
total_salary

What is the procedure doing with total
salary? Displaying it? Calculating it?

display_
total_salary

FUNCTION
calculate_
total_salary

Well, of course, you’re calculating the
total salary—and returning it as well.

total_salary

FUNCTION
get_total_
salary

What else does a function do but get
and return things? Use of the get_
prefix is unnecessary; the function usage
in code makes this clear.

total_salary

,ch02.14530 Page 24 Friday, June 15, 2001 5:45 PM

Coding Style and Conventions 25

Use a label directly in front of loops and nested anonymous blocks:

• To name that portion of code and thereby self-document what it’s doing

• So you can repeat that name with the END statement of that block or loop

This recommendation is especially important when you have multiple nestings of
loops (and possibly inconsistent indentation), as in the following:

LOOP
 <body>
 WHILE <condition>
 LOOP
 <while body>
 END LOOP;
END LOOP;

Example

I use labels for a block and two nested loops, and then apply them in the appro-
priate END statements. I can now easily see which loop and block is ending, no
matter how badly my code is indented!

CREATE OR REPLACE PROCEDURE display_book_usage
IS
BEGIN
 <<best_seller_review>>
 DECLARE
 CURSOR yearly_analysis_cur IS SELECT ...;
 CURSOR monthly_analysis_cur IS SELECT ...;
 BEGIN
 <<yearly_analysis>>
 FOR book_rec IN yearly_analysis_cur (2000)
 LOOP
 <<monthly_analysis>>
 FOR month_rec IN
 monthly_analysis_cur (
 yearly_analysis_cur%rowcount)
 LOOP
 ... lots of month-related code ...

END LOOP monthly_analysis;
 ... lots of year-related code ...

END LOOP yearly_analysis;
END best_seller_review;

END display_book_usage;

Benefits

If you use labels, it’s much easier to read your code, especially if it contains loops
and nested blocks that have long bodies (i.e., the loop starts on page 2 and ends
on page 7, with three other loops inside that outer loop).

,ch02.14530 Page 25 Friday, June 15, 2001 5:45 PM

26 Chapter 2: Coding Style and Conventions

STYL-07: Express complex expressions unambiguously using
parentheses.

The rules of operator precedence follow the commonly accepted precedence of
algebraic operators. The strong typing approach of PL/SQL,* combined with the
common precedence rules, make many parentheses unnecessary. When an
uncommon combination of operators occurs, however, it may be helpful to add
parentheses even when the precedence rules apply.

The rules of evaluation do specify left-to-right evaluation for operators that have
the same precedence level. However, this is the most commonly overlooked rule
of evaluation when checking expressions for correctness.

Many developers apply a consistent rule for improved readability in this area:
always use parentheses around every Boolean expression, including IF, ELSIF, and
WHILE statements, as well as variable assignments, regardless of the simplicity of
the expressions. So, rather than:

IF cust_rec.min_balance < 1000 THEN ...

you instead write:

IF (cust_rec.min_balance < 1000) THEN ...

Example

You might not want a standard that requires you to always use parentheses, but in
some situations, parentheses are all but required for readability. Consider the
following expression:

5 + Y**3 MOD 10

The PL/SQL compiler will not be the least bit confused by this statement; it will
apply its unambiguous rules and come up with an answer. Developers, however,
may not have such an easy time of it. You are better off writing that same line of
code as follows:

5 + ((Y ** 3) MOD 10)

Benefits

Everyone, including the author of the code, can more easily understand the logic
and intent (which is crucial for maintenance) of complex expressions.

STYL-08: Use vertical code alignment to emphasize vertical
relationships.

A common code formatting technique is vertical alignment. Here is an example in
a SQL WHERE clause:

WHERE COM.company_id = SAL.company_id
 AND COM.company_type_cd = TYP.company_type_cd

* In a strongly typed programming language, you must declare each type of data structure be-
fore you can work with it. And when you declare it, you specify its type and, optionally, an
initial or default value. Certain operations are allowed only with certain types.

,ch02.14530 Page 26 Friday, June 15, 2001 5:45 PM

Coding Style and Conventions 27

 AND TYP.company_type_cd = CFG.company_type_cd
 AND COM.region_cd = REG.region_cd
 AND REG.status = RST.status;

You should use vertical alignment only when the elements that are lined up verti-
cally have a relationship with each other that you want to express. In the WHERE
clause shown here, however, there is no relationship between the right sides of
the various expressions. The relationship is between the left and right sides of
each individual expression. This is, therefore, a misuse of vertical alignment.

Example

Developers often (and justifiably) use vertical alignment with program parameter
lists, as in:

PROCEDURE maximize_profits (
 advertising_budget IN NUMBER,
 bribery_budget IN OUT NUMBER,
 merge_and_purge_on IN DATE := SYSDATE,
 obscene_bonus OUT NUMBER);

Vertical alignment allows you to easily see the different parameter modes and
datatypes.

Vertical alignment is also handy when declaring many constants, as in:

CREATE OR REPLACE PACKAGE genAPI
IS
 c_table CONSTANT CHAR(5) := 'TABLE';
 c_column CONSTANT CHAR(6) := 'COLUMN';
 c_genpky CONSTANT CHAR(6) := 'GENPKY';
 c_genpkyonly CONSTANT CHAR(10) := 'GENPKYONLY';
 c_sequence CONSTANT CHAR(7) := 'SEQNAME';
 c_pkygenproc CONSTANT CHAR(10) := 'PKYGENPROC';
 c_pkygenfunc CONSTANT CHAR(10) := 'PKYGENFUNC';
 c_usingxmn CONSTANT CHAR(8) := 'USINGXMN';
 c_fromod2k CONSTANT CHAR(8) := 'FROMOD2K';

In this case, I want to be able to scan the list of values to make sure they are
unique. I can also easily compare lengths of strings with the CHAR declarations,
avoiding nuisance VALUE_ERROR exceptions on initialization.

Here are some other code elements for which vertical alignment adds value:

• CREATE TABLE statements that define all the individual columns.

• Record TYPE declarations (they have roughly the same structure as a CRE-
ATE TABLE statement).

• Series of assignments to fields of records and other multipart data structures.

Benefits

Careful and appropriate use of vertical alignment enhances readability. Used inap-
propriately, however, vertical alignment actually makes it harder to see what is
really going on in your code.

,ch02.14530 Page 27 Friday, June 15, 2001 5:45 PM

28 Chapter 2: Coding Style and Conventions

Challenges

Vertical alignment is a “high maintenance” format. Add a new, long variable name,
and you find yourself reformatting 20 other lines of code to match. An automatic
formatter comes in very handy when you decide to format vertically.

STYL-09: Comment tersely with value-added information.

The best way to explain what your code is doing is to let that code speak for
itself. You can take advantage of many self-documentation techniques, including:

• Define variables and call programs (local modules, in particular; see MOD-04)
to give names to and hide complex expressions.

• Use the language construct that best reflects the code you are writing (declare
CONSTANTS when values don’t change, choose the right kind of loop for
your logic, etc.).

Whenever you find yourself adding a comment to your code, first consider
whether it is possible to modify the code itself to express your comment. Good
reasons to add comments include:

• Program headers (see STYL-03)

• Explanations of workarounds, patches, operating-system dependencies, and
other “exceptional” circumstances

• Complex or opaque logic

Example

Let’s follow a trail of unnecessarily commented code to self-documenting code. I
start with:

/* If the first field of the properties record is N... */
IF properties_flag.field1 = 'N'

Yikes! My line of code was incomprehensible and my comment simply repeated
the code using the English language, rather than PL/SQL. No added value, no real
assistance, yet not at all uncommon. The least I can do is use the comment to
“translate” from computer-talk to business requirement:

/* If the customer is not eligible for a discount... */
IF properties_flag.field1 = 'N'

That’s better, but I have created a redundancy: if my requirement ever changes, I
have to change the comment and the code. Why not change the names of my
variables and literals so that the code explains itself?

IF customer_flag.discount = constants.ineligible

Much better! Now I no longer need a comment. My remaining concern with this
line of code is that it “exposes” a business rule; it shows how (at this moment in
time) I determine whether a customer is eligible for a discount. Business rules
are notorious for changing over time—and for being referenced in multiple
places throughout my application. So my best bet is to hide the rule behind a
self-documenting function call:

IF NOT customer_rules.eligible_for_discount (customer_id)

,ch02.14530 Page 28 Friday, June 15, 2001 5:45 PM

Coding Style and Conventions 29

Benefits

By emphasizing reliance on code and not comments to explain, your program
becomes more concise and more readable.

When business requirements change, you don’t have to change the code and the
comment that explained the code.

The business rule is likely to be reused in many other places in your application
(see MOD-01).

Challenges

It can be difficult to recognize formulas and business rules (especially when you
have been asked to maintain or modify someone else’s programs, or when you are
new to an application).

Once you recognize an exposed formula, you have to be careful about extracting
it from the code and replacing it with a variable or program call.

STYL-10: Adopt meaningful naming conventions for source
files.

This is a “meta-code” style issue. You should define a standard for the way you
name the operating system files that contain your source code (some organiza-
tions now store and edit source code entirely in the database, but they are still in
the minority). These files can contain many different kinds of “code”:

• DDL definitions of data structures (tables, indexes, GRANT statements, etc.)

• SQL*Plus scripts that contain a variety of anonymous blocks and standalone
SQL statements, as well as SQL*Plus formatting/control commands

• PL/SQL program definitions

You need to be careful of how you organize the code in your files. Otherwise,
you will end up with a plethora of files in a mish-mash of subdirectories. Your
development team will have a hard time figuring out where anything is, and what
all those files are supposed to do.

You should also be deliberate in how you name those files, including their exten-
sions. There is a strong tendency in the Oracle world to use the .sql extension for
all files. Why? Because .sql is the default extension of SQL*Plus: if you don’t
specify an extension, that tool automatically looks for a .sql file. Laziness,
however, is a poor excuse for a naming convention; by relying on a single exten-
sion, you forego valuable “real estate” in that filename.

Here are some recommendations for file-usage conventions:

• Use separate files for each distinct program or package. Don’t jumble a bunch
of stuff together in a single file. In particular, put your package specification
in a different file from the package body. That way, you can recompile the
body without recompiling the specification (the latter action causes all depen-
dent programs to be marked invalid).

,ch02.14530 Page 29 Friday, June 15, 2001 5:45 PM

30 Chapter 2: Coding Style and Conventions

• Use filenames that accurately describe the contents of the file. If your file con-
tains the definition of a procedure, use the name of the procedure as the file-
name.

• Set a standard for file extensions that indicates the type of code inside the file
(as shown in the “Examples” section).

Examples

Here are some suggestions for standard file extensions:

Benefits

The name of the file (including its extension) will “tell a story” about its contents,
such as the type of code, the name of the program, etc. This increased transpar-
ency makes it easier for all developers to work with and maintain the code.

Contents of File Extension

Package specification .pks

Package body .pkb

Package specification and bodya

a This makes sense to do only for small, self-contained packages that don’t refer-
ence other program units.

.pkg

Procedure .pro (or .sp for stored procedure)

Function .fun (or .sf for stored function)

Create table script(s) .tab or .ddl

Synonym creation statements .syn

Index definitions .ind

Constraint definitions .con

Test script .tst

,ch02.14530 Page 30 Friday, June 15, 2001 5:45 PM

31

Chapter3

3
3.Variables and

Data Structures

PL/SQL is a strongly typed language. This means that before you can work
with any kind of data structure, you must first declare it. And when you
declare it, you specify its type and, optionally, an initial or default value.
All declarations of these variables must be made in the declaration section
of your anonymous block, procedure, function, or package.

Declaring Variables and
Data Structures
Use the best practices described in this section when you declare your
data structures.

DAT-01: Match datatypes to computational usage.

Gee, that’s a general best practice, isn’t it? Of course you should do things the right
way. So the question becomes: what datatype is the correct datatype? The
following table offers some concrete advice on potential issues you might
encounter:

Datatype Issues and Recommendations

NUMBER If you don’t specify a precision, as in NUMBER(12,2), Oracle
supports up to 38 digits of precision. If you don’t need this preci-
sion, you’re wasting memory.

CHAR This is a fixed-length character string and is mostly available for
compatibility purposes with code written in earlier versions of
Oracle. The values assigned to CHAR variables are right-padded
with spaces, which can result in unexpected behavior. Avoid
CHAR unless it’s specifically needed.

,ch03.14664 Page 31 Friday, June 15, 2001 5:45 PM

32 Chapter 3: Variables and Data Structures

DAT-02: Anchor variables to database datatypes using
%TYPE and %ROWTYPE.

When you declare a variable using %TYPE or %ROWTYPE, you “anchor” the type
of that data to another, previously defined element. If your program variable has
the same datatype as (and, as is usually the case, is acting as a container for) a
column in a table or view, use %TYPE to define it from that column. If your record
has the same structure as a row in a table or view, use %ROWTYPE to define it
from that table.

Example

Here is an example of a “hard-coded” declaration:

DECLARE
 l_title VARCHAR2(100);

I pretty clearly want to put a book title into this variable. And I checked the data
dictionary and found that the title column is defined VARCHAR2(60). So that
declaration seemed pretty safe. Unfortunately, two months later, the DBA
expanded the column size to VARCHAR2(200)—and a month after that, my code
started getting VALUE_ERROR exceptions. Bad news!

A much better approach is shown in the following declaration section:

DECLARE
 l_title book.title%TYPE;

Benefits

Your code automatically adapts to underlying changes in data structures. When-
ever the data structure against which a declaration is anchored changes, the
program containing the anchoring is marked INVALID. Upon recompilation, it
automatically uses the new form of the data structure.

VARCHAR This variation on the VARCHAR2 variable-length declaration is
provided by Oracle for compatibility purposes. Eschew
VARCHAR in favor of VARCHAR2.

VARCHAR2 The greatest challenge you will run into with VARCHAR2 is to
avoid the tendency to hard-code a maximum length, as in
VARCHAR2(30). Use %TYPE and SUBTYPE instead, as described
later in this chapter.
Also, prior to Oracle8, VARCHAR2 variables are treated like vari-
able-length strings for purposes of manipulation and evaluation,
but Oracle does allocate the full amount of memory upon decla-
ration. If you declare a variable of VARCHAR2(2000), then Oracle
allocates 2000 bytes, even if you use only three.

INTEGER If your integer values fall within the range of –231+1 .. 231–1
(a.k.a. –2147483647 .. 2147483647), you should declare your vari-
ables as PLS_INTEGER. This is the most efficient format for
integer manipulation.

Datatype Issues and Recommendations

,ch03.14664 Page 32 Friday, June 15, 2001 5:45 PM

Declaring Variables and Data Structures 33

These declarations are “self-documenting”; a variable declaration tells anyone who
reads it what kind of data this variable is supposed to hold.

Challenges

You need to know the names of columns in tables. The USER_TAB_COLUMNS
data dictionary view contains this information; in SQL*Plus you can use the
DESCRIBE command to find this information.

A person reviewing anchored declarations doesn’t necessarily know the type of
data; he must look up the definition of that column or table in the data dictionary.

DAT-03: Use SUBTYPE to standardize application-specific
datatypes.

The SUBTYPE statement allows you to create “aliases” for existing types of infor-
mation, in effect creating your own specially named datatypes. Use SUBTYPE
when you want to standardize on a set of named datatypes that aren’t anchorable
back to the database.

Example

Suppose that my book table has a page_count column, defined as INTEGER(4). I
then write a program that calculates the total number of pages I have written
across all books. If I declare a variable to hold this value as:

DECLARE
 l_total book.page_count%TYPE;

I could run into problems. My total count might exceed four digits. In fact, I may
well not have any database column I can use for anchoring in this case. Yet, I still
should not hard-code a declaration like this:

DECLARE
 l_total INTEGER(10);

Instead, I will create a package and define a variable there that is big enough to
hold the total count:

CREATE OR REPLACE PACKAGE book_data
IS
 SUBTYPE total_count_t IS INTEGER (10);

and then use that in my declaration section:

DECLARE
 l_total book_data.total_count_t;

If you use Oracle7 or Oracle8, the SUBTYPE statement just shown
will fail; Oracle doesn’t recognize constrained SUBTYPEs until
Oracle8i. In this case, you can do the following:

CREATE OR REPLACE PACKAGE book_data

IS

 total_count INTEGER(10);

 SUBTYPE total_count_t IS total_count;

,ch03.14664 Page 33 Friday, June 15, 2001 5:45 PM

34 Chapter 3: Variables and Data Structures

Benefits

You standardize or “normalize” all datatype definitions. In other words, any defini-
tion appears only once in your application. Everything is anchored from that.

Challenges

You will either need to take the time to build a single “datatypes” package
containing these definitions, or need to remember to place your standard defini-
tions in the appropriate packages in your application.

DAT-04: Do not hard-code VARCHAR2 lengths.

Sure, in general, you shouldn’t hard-code your datatypes; instead, you should rely
on anchoring (see DAT-02) and SUBTYPEs (see DAT-03). This best practice is a
special-case emphasis of those other best practices.

Don’t hard-code VARCHAR2 lengths, like:

DECLARE
 -- Gee, should be big enough
 big_string VARCHAR2(2000);

Such a declaration may seem like a big-enough string, but it’s also a ticking time
bomb in your application. Either %TYPE back to a database column, or define
SUBTYPEs in a package specification that give names to standard VARCHAR2
usages.

Example

The basic problem with hard-coding a VARCHAR2 length is that stuff changes.
Consider the maximum length possible for a VARCHAR2 column in the database.
It was 2000 up through Oracle8, and then it expanded to 4000 in Oracle8i. The
best way to handle this situation is to create a special type:

CREATE OR REPLACE app_types
IS
 SUBTYPE dbmax_vc2 IS VARCHAR2(2000);

Then, when you upgrade to Oracle8i, you simply change the definition of the
SUBTYPE. All usages of that type stay the same.

Benefits

Your code is less likely to raise VALUE_ERROR exceptions over time.

DAT-05: Use CONSTANT declarations for variables whose
values do not change.

If you know that the value of your variable isn’t going to change, take the time,
and make the effort, to declare it as a constant.

Example

The following script runs during business hours (9 A.M. to 6 P.M.) and is used to
analyze book checkouts in the MYSTERY category:

,ch03.14664 Page 34 Friday, June 15, 2001 5:45 PM

Declaring Variables and Data Structures 35

DECLARE
 c_date CONSTANT DATE := TRUNC (SYSDATE);
 c_category CONSTANT book.category%TYPE :=
 'MYSTERY';
BEGIN
 checkouts.analyze (c_date, c_category);
 ...
 -- 75 lines later
 FOR rec IN (
 SELECT * FROM book
 WHERE category = c_category)
 LOOP
 ...
 END LOOP;

After writing, testing, and deploying this script, I can be confident that a devel-
oper won’t, six months from now, make a change to the c_category structure
between the call to checkouts.analyze and the FOR loop.

Benefits

Your code self-documents the usage of this data structure: it should not and
cannot change.

A developer can’t later mistakenly change the data structure’s value.

DAT-06: Perform complex variable initialization in the
executable section.

The exception section of a block can trap only errors raised in the executable
section of that block. So if the code you run to assign a default value to a variable
fails in the declaration section, that error is propagated unhandled out to the
enclosing program. It’s difficult to debug these problems, so, you must either:

• Be sure that initialization logic doesn’t raise an error.

• Perform your initialization at the beginning of the executable section, prefera-
bly in a separate “init” program.

Example

Here’s some dangerous code, since it isn’t at all apparent what these functions do
and what they pass back:

CREATE OR REPLACE PROCEDURE find_bestsellers
IS
 l_last_title book.title%TYPE :=
 last_search (SYSDATE);

 l_min_count INTEGER(3) :=
 bestseller.limits (bestseller.low);
BEGIN

And here is a much safer approach:

CREATE OR REPLACE PROCEDURE find_bestsellers
IS

,ch03.14664 Page 35 Friday, June 15, 2001 5:45 PM

36 Chapter 3: Variables and Data Structures

 l_last_title book.title%TYPE;
 l_min_count INTEGER(3);

 PROCEDURE init IS
 BEGIN
 l_last_title:= last_search (SYSDATE);
 l_min_count:=
 bestseller.limits (bestseller.low);
 EXCEPTION
 -- Trap and handle all errors
 -- inside the program
 END;
BEGIN
 init;

Benefits

Your programs will behave more reliably; if an error does occur as you initialize
variables, you can trap the error locally and decide how you want to handle the
situation.

Using Variables and
Data Structures
Use the best practices described in this section when you reference the data struc-
tures you have declared in your programs.

DAT-07: Replace complex expressions with Boolean variables
and functions.

A Boolean expression evaluates to one of three values: TRUE, FALSE, or NULL.
You can use Boolean variables and functions to hide complex expressions; the
result is code that is virtually as readable as “straight” English—or whatever
language you use to communicate with other human beings.

Example

IF total_sal BETWEEN 10000 AND 50000 AND
 emp_status (emp_rec.empno) = 'N' AND
 (MONTHS_BETWEEN
 (emp_rec.hiredate, SYSDATE) > 10)
THEN
 give_raise (emp_rec.empno);
END IF;

Wow, that’s hard to understand! It’d be much easier if the code looked like this:

IF eligible_for_raise (totsal, emp_rec)
THEN
 give_raise (emp_rec.empno);
END IF;

And even if you don’t want to (or need to) bother with creating a separate func-
tion, you can still move the complexity to a local variable, as in:

,ch03.14664 Page 36 Friday, June 15, 2001 5:45 PM

Using Variables and Data Structures 37

DECLARE
 eligible_for_raise BOOLEAN :=
 total_sal BETWEEN 10000 AND 50000 AND
 emp_status (emp_rec.empno) = 'N' AND
 (MONTHS_BETWEEN
 (emp_rec.hiredate, SYSDATE) > 10);
BEGIN
 IF eligible_for_raise
 THEN
 give_raise (emp_rec.empno);
 END IF;

Benefits

It will be much easier for anyone to read your code; you can literally read it. If
you then need to understand how the Boolean expression is computed, you can
look “under the covers.”

This is a technique that can be applied (with care) to existing “spaghetti code.” As
you go into a program to fix or enhance it, look for opportunities to simplify and
shorten executable sections by shifting complexity to local variables and programs.

Challenges

Before you modify existing code, make sure you have solid unit test scripts in
place so you can quickly verify that your changes haven’t introduced bugs into the
program.

Resources

http://oracle.oreilly.com/utplsql : utPLSQL, a unit test framework for PL/SQL
developers.

DAT-08: Do not overload data structure usage.

This is just one entry of a more general category: “don’t be lazy!” When you
declare a variable, you should give it a name that accurately reflects its purpose in
a program. If you then use that variable in more than one way (“recycling”), you
create confusion and, very possibly, introduce bugs.

The solution is to declare and manipulate separate data structures for each distinct
requirement.

And here’s a general piece of advice: reliance on a “time-saver” short-cut should
raise a red flag. You’re probably doing (or avoiding) something now for which
you will pay later.

Example

I have a few different needs for an integer value, so I will declare one and use it
throughout:

DECLARE
 ... other declarations

 intval INTEGER;
BEGIN

,ch03.14664 Page 37 Friday, June 15, 2001 5:45 PM

38 Chapter 3: Variables and Data Structures

 intval := list_of_books.COUNT;

 IF intval > 0
 THEN
 intval := list_of_books(list_of_books.FIRST).page_count;

 analyze_book (intval);
 END IF;

It’s pretty much impossible to look at any usage of intval and understand what is
going on. You have to go back to the most recent assignment. Compare that to the
following:

DECLARE
 ... other declarations

 l_book_count INTEGER;
 l_page_count INTEGER;
BEGIN
 l_book_count := list_of_books.COUNT;

 IF l_book_count > 0
 THEN
 l_page_count:= list_of_books(list_of_books.FIRST).page_count;

 analyze_book (l_page_count);
 END IF;

Benefits

It’s a whole lot easier to understand what your code does.

You can make a change to one variable’s usage without worrying about its ripple
effect to other areas of your code.

DAT-09: Remove unused variables and code.

You should go through your programs and remove any part of your code that is
no longer used. This is a relatively straightforward process for variables and
named constants. Simply execute searches for a variable’s name in that variable’s
scope. If you find that the only place it appears is in its declaration, delete the
declaration and, by doing so, delete one more potential question mark from your
code.

There’s never a better time to review all the steps you took, and to understand the
reasons you took them, than immediately upon completion of your program. If
you wait, you will find it particularly difficult to remember those parts of the
program that were needed at one point, but were rendered unnecessary in the
end. “Dead zones” in your code become sources of deep insecurity for mainte-
nance programmers.

You should also leverage tools that will perform this analysis for you, such as
RevealNet’s PL/Formatter.

,ch03.14664 Page 38 Friday, June 15, 2001 5:45 PM

Using Variables and Data Structures 39

Example

The following block of code has several dead zones that could cause a variety of
problems. Can you find them all?

CREATE OR REPLACE PROCEDURE weekly_check (
 isbn_in IN book.isbn%TYPE,
 author_in IN VARCHAR2)
IS
 l_count PLS_INTEGER;
 l_counter PLS_INTEGER;
 l_available BOOLEAN;
 l_new_location PLS_INTEGER := 1056;
 l_published_date DATE := SYSDATE;
BEGIN
 l_published_date := te_book.published_date (isbn_in);

 IF ADD_MONTHS (SYSDATE, -60) > l_published_date
 THEN
 review_usage;
 ELSIF ADD_MONTHS (SYSDATE, -24) > l_published_date
 THEN
 check_availability (isbn_in, l_available, l_count);

 IF l_available
 AND /* Turn off due to Req A12.6 */ FALSE
 THEN
 transfer_book (isbn_in, l_count - 1, l_new_location);
 END IF;
 -- Check for reserves
 -- reserve_pkg.analyze_requests (isbn_in);
 END IF;
END;

Here’s what I found:

• The author_in parameter is declared but never used. It doesn’t even have a
default value, so you have to pass in an ignored value.

• l_counter is declared but not used.

• l_published_date is assigned a default value of SYSDATE, which is immedi-
ately overridden by the call to te_book.published_date.

• The call to transfer_book has been turned off with the addition of AND
FALSE.

• The call to reserve_pkg.analyze_requests has been commented out.

Benefits

It’s much easier to maintain, debug and enhance code that doesn’t have “dead
zones.”

Challenges

There are sometimes valid reasons for keeping dead code in place. You may want
to turn off code temporarily. Also, you may need to comment out some logic but
still show that this action was done and why. In such cases, make sure that you

,ch03.14664 Page 39 Friday, June 15, 2001 5:45 PM

40 Chapter 3: Variables and Data Structures

include the necessary documentation in the code. Even better, use problem
tracking or bug reporting software to keep a comprehensive history of any
changes made to code.

DAT-10: Clean up data structures when your program
terminates (successfully or with an error).

PL/SQL does an awful lot of cleanup for you, but there are many scenarios in
which it’s absolutely crucial for you to take your own cleanup actions.

The best way to do this is to standardize on a local cleanup procedure that is to be
included in each program. Call this program both at the end of the executable
section and in each exception handler WHEN clause.

Example

The following program manipulates a packaged cursor, declares a DBMS_SQL
cursor, and writes information to a file:

CREATE OR REPLACE PROCEDURE busy_busy
IS
 fileid UTL_FILE.file_type;
 dyncur PLS_INTEGER;
BEGIN
 dyncur := DBMS_SQL.open_cursor;
 OPEN book_pkg.all_books_by ('FEUERSTEIN');
 fileid := UTL_FILE.fopen (
 '/apps/library', 'bestsellers.txt', 'R');
 ...
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 err.log;
 RAISE;
END;

If I’m not careful, I can end up with an unclosable dynamic SQL cursor, a still-
open packaged cursor that causes an “ORA-06511: PL/SQL: cursor already open”
error, and a file that can’t be closed without a call to UTL_FILE.FCLOSE_ALL or a
disconnect. Here’s a much better approach:

CREATE OR REPLACE PROCEDURE busy_busy
IS
 fileid UTL_FILE.file_type;
 dyncur PLS_INTEGER;

 PROCEDURE cleanup IS
 BEGIN
 IF book_pkg.all_books_by%ISOPEN
 THEN
 CLOSE book_pkg.all_books_by;
 END IF;

 DBMS_SQL.CLOSE_CURSOR (dyncur);

,ch03.14664 Page 40 Friday, June 15, 2001 5:45 PM

Using Variables and Data Structures 41

 UTL_FILE.FCLOSE (fileid);
 END;
BEGIN
 dyncur := DBMS_SQL.open_cursor;
 OPEN book_pkg.all_books_by ('FEUERSTEIN');
 fileid := UTL_FILE.fopen (
 '/apps/library', 'bestsellers.txt', 'R');
 ...

cleanup;
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 err.log;

 cleanup;
 RAISE;
END;

Benefits

Your programs are less likely to have memory leaks (open cursors) and to cause
problems in other programs by leaving data structures in an uncertain state.

By defining a standard cleanup procedure, future developers can easily add new
cleanup operations in one place and be certain they will be run at all exit points.

Challenges

Set up a standard format for your programs, including initialization and cleanup
procedures. It’s then a challenge to make sure developers use that template.

DAT-11: Beware of and avoid implicit datatype conversions.

Sometimes, PL/SQL makes life just too darn easy for us developers. It will, for
example, allow you to write and execute code like this:

DECLARE
 my_birthdate DATE := '09-SEP-58';

In this case, the runtime engine automatically converts the string to a date, using
the default format mask.

You should, however, avoid implicit conversions in your code. There are at least
two big problems with relying on PL/SQL to convert data on your behalf:

• Conversion behavior can be non-intuitive. PL/SQL may convert data in ways
that you don’t expect, resulting in problems, especially within SQL statements.

• Conversion rules aren’t under the control of the developer. These rules can
change with an upgrade to a new version of Oracle or by changing RDBMS-
wide parameters, such as NLS_DATE_FORMAT.

You can convert explicitly using any of the following built-in functions: TO_DATE,
TO_CHAR, TO_NUMBER, and CAST.

Example

The declaration of the my_birthdate variable is a sterling example of the draw-
backs of implicit conversion.

,ch03.14664 Page 41 Friday, June 15, 2001 5:45 PM

42 Chapter 3: Variables and Data Structures

DECLARE
 my_birthdate DATE := '09-SEP-58';

This code raises an error if the default format mask for the instance is anything but
DD-MON-YY or DD-MON-RR. That format is set (and changed) in the parameter
initialization file—well out of the control of most PL/SQL developers. It can also
be modified for a specific session. A much better approach is:

 DECLARE
 my_birthdate DATE :=
 TO_DATE ('09-SEP-58', 'DD-MON-RR');

Benefits

The behavior of your code is more consistent and predictable, since you aren’t
relying on something external to your code. Explicit conversions, for example,
would have avoided the vast majority of Y2K issues in PL/SQL code.

Resources

bool.pkg : A package to convert between Booleans and strings, since Oracle doesn’t
offer any built-in utilities to do this.

Declaring and Using
Package Variables
Use the best practices described in this section when you are declaring variables
for use in packages.

DAT-12: Package application-named literal constants
together.

Never place a hard-coded literal, such as “Y” or 150 in your code. Instead, create a
package to hold these values and publish a name to be used in place of the
literals. You will probably find it best to:

• Define constants that are referenced throughout your application in a single,
central package.

• Define constants that are more specific to a single area of functionality within
the package that encapsulates that functionality.

Example

Here is a portion of a general constants package:

CREATE OR REPLACE PACKAGE constants
IS
 -- Standard string representation of TRUE/FALSE
 tval CONSTANT CHAR(1) := 'T';
 fval CONSTANT CHAR(1) := 'F';

 -- Earliest valid date: 5 years past
 min_date CONSTANT DATE :=
 ADD_MONTHS (SYSDATE, -5 * 12);

,ch03.14664 Page 42 Friday, June 15, 2001 5:45 PM

Declaring and Using Package Variables 43

And here is a package that contains constants specific to one area of functionality:

CREATE OR REPLACE PACKAGE nightly_transform
IS
 c_max_weeks CONSTANT INTEGER := 54;

 c_active CONSTANT CHAR(1) := 'A';
 c_inactive CONSTANT CHAR(1) := 'I';

 c_english CONSTANT INTEGER := 1;
 c_usa CONSTANT INTEGER := 1;
 c_namerica CONSTANT VARCHAR2(2) := 'N';
END nightly_transform;

Benefits

You’re less likely to hard-code literal values in your programs, thus improving the
readability and maintainability of your code.

Youve established a place to go when a developer needs to add another constant
to hide a literal.

Challenges

The entire development team needs to know about the packages and use the
constants that have been defined for them.

Be careful about the values you assign to your constants. With cut-and-paste,
it’s easy to end up assigning a value that’s too long and raises the “ORA-06502:
PL/SQL: numeric or value error” at runtime—when the package is initialized.

DAT-13: Centralize TYPE definitions in package
specifications.

As you use more and more of the PL/SQL language features, you will define many
TYPEs of things, including:

• SUBTYPEs that define application-specific datatypes

• Collection TYPEs, such as lists of numbers, dates, or records

• Referenced cursor TYPEs, from which cursor variables are declared

Some of these TYPEs can be used unchanged throughout your application (there
is only one way, for example, to declare an index-by table of dates); other types
are specific to some part of an application but are standard within that.

In either case, create a package to hold these standard TYPEs, so that they can be
used in multiple programs.

Example

Here is a portion of a package specification that contains standard TYPE state-
ments for nested and index-by tables:

CREATE OR REPLACE PACKAGE colltype
IS
 TYPE boolean_ntab IS TABLE OF BOOLEAN;

,ch03.14664 Page 43 Friday, June 15, 2001 5:45 PM

44 Chapter 3: Variables and Data Structures

 TYPE boolean_ibtab IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;

 TYPE date_ntab IS TABLE OF DATE;

 TYPE date_ibtab IS TABLE OF DATE
 INDEX BY BINARY_INTEGER;
 ...
END colltype;

Benefits

Developers write their code more rapidly and with fewer bugs by relying on
predefined TYPEs.

As you need to maintain your TYPEs (those based on application-specific elements
are, after all, very likely to change), you go to one package and make the change
in one place.

Challenges

Developers must be disciplined enough to seek out predefined TYPEs or to add
new TYPEs to existing packages.

Resources

colltype.pks : A package specification of standard collection TYPE definitions.

DAT-14: Use package globals judiciously and only in
package bodies.

A global variable is a data structure that can be referenced outside the scope or
block in which it’s declared. In the following block, for example, the l_publish_
date is global to the local display_book_info procedure:

DECLARE
 l_publish_date DATE;
 ...
 PROCEDURE display_book_info IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE (l_publish_date);
 END;

Globals are dangerous and should be avoided, because they create hidden
“dependencies” or side-effects. A global doesn’t have to be passed through the
parameter list, so it’s hard for you to even know that a global is referenced in a
program without looking at the implementation.

Globals are most often defined in packages. If you declare a variable at the
package level (not within any specific program), that variable exists and retains its
value for the duration of your session.

The general solution to this problem is to pass the global as a parameter in your
procedure and function; don’t reference it directly within the program. Another
general technique to keep in mind is to declare variables, cursors, functions, and
other objects as “deeply” as possible (i.e., in the block nearest to where, or within

,ch03.14664 Page 44 Friday, June 15, 2001 5:45 PM

Declaring and Using Package Variables 45

which, that object will be used), in order to reduce the chance of unintended use
by other sections of the code.

Reliance on global data structures can be a particularly acute prob-
lem in Oracle Developer’s Formsbuilder (previously known as Ora-
cle Forms). Developers have historically relied on (and overused)
:GLOBAL data structures to pass information between forms. In the
latest versions of Oracle Developer, avoid :GLOBAL variables.
Instead, build and share packages (and variables declared within
those packages) among forms.

Example

Here is an example of a function with a hidden dependency on a global variable:

CREATE OR REPLACE FUNCTION overdue_fine (
 isbn_in IN book.isbn%TYPE)
 RETURN NUMBER
IS
 l_days_overdue NUMBER;
BEGIN
 l_days_overdue :=
 overdue_pkg.days_overdue (isbn_in, SYSDATE);
 RETURN
 (l_days_overdue * overdue_pkg.g_daily_fine);
END;

The global is the amount of the daily fine. It’s buried inside the function. By
writing the function this way, two things happen: (a) you lose flexibility to pass in
a different daily fine amount, as may be required, and (b) if the daily fine has not
been set within the overdue package, the function doesn’t work properly.

You can get rid of the dependency by adding a parameter:

CREATE OR REPLACE FUNCTION overdue_fine (
 isbn_in IN book.isbn%TYPE,
 daily_fine_in IN NUMBER)
 RETURN NUMBER
IS
 l_days_overdue NUMBER;
BEGIN
 l_days_overdue :=
 overdue_pkg.days_overdue (isbn_in, SYSDATE);
 RETURN
 (l_days_overdue * daily_fine_in);
END;

Benefits

By reducing the interdependencies between programs, you can more easily and
confidently make a change to one without worrying about the others being
affected.

,ch03.14664 Page 45 Friday, June 15, 2001 5:45 PM

46 Chapter 3: Variables and Data Structures

Challenges

You may need to revamp existing programs to pull out global references and
replace them with either parameters or calls to “get and set” programs that encap-
sulate the global data (see DAT-15).

DAT-15: Expose package globals using “get and set” modules.

Data structures (scalar variables, collections, cursors) declared in the package spec-
ification (not within any specific program) are directly referenceable from any
program run from a session with EXECUTE authority on the package. This is
always a bad idea and should be avoided.

Instead, declare all package-level data in the package body and provide “get and
set” programs—a function to GET the value and a procedure to SET the value—in
the package specification. Developers can then access the data through these
programs, and automatically follow whatever rules you establish for manipulating
that data.

Example

I’ve created a package to calculate overdue fines. The fine is, by default, $.10 per
day, but it can be changed according to this rule: the fine can never be less than
$.05 or more than $.25 per day. Here’s my first version:

CREATE OR REPLACE PACKAGE overdue_pkg
IS
 g_daily_fine NUMBER := .10;

 FUNCTION days_overdue (isbn_in IN book.isbn%TYPE)
 RETURN INTEGER;

 -- Relies on g_daily_fine for calculation
 FUNCTION fine (isbn_in IN book.isbn%TYPE)
 RETURN INTEGER;
END overdue_pkg;

You can easily see the problem with this package in the following block:

BEGIN
 overdue_pkg.g_daily_fine := .50;

 pl ('Your overdue fine is ' ||
 overdue_pkg.fine (' 1-56592-375-8'));
END;

As you can see, I bypassed the business rule and applied a daily fine of $.50! By
“publishing” the daily fine variable, I lost control of my data structure and the
ability to enforce my business rules.

The following rewrite of overdue_pkg fixes the problem; for the sake of the trees, I
show only the replacement of the g_daily_fine variable with its “get and set”
programs:

CREATE OR REPLACE PACKAGE overdue_pkg
IS

,ch03.14664 Page 46 Friday, June 15, 2001 5:45 PM

Declaring and Using Package Variables 47

 PROCEDURE set_daily_fine (fine_in IN NUMBER);
 PROCEDURE daily_fine RETURN NUMBER;

and the implementation:

CREATE OR REPLACE PACKAGE BODY overdue_pkg
IS
 g_daily_fine NUMBER := .10;

 PROCEDURE set_daily_fine (fine_in IN NUMBER)
 IS
 BEGIN
 g_daily_fine :=
 GREATEST (LEAST (fine_in, .25), .05);
 END;

 FUNCTION daily_fine
 RETURN NUMBER
 IS
 BEGIN
 RETURN g_daily_fine;
 END;

Now it’s impossible to bypass the business rule for the daily fine.

You will be even better off, of course, if you put your maximum
and minimum fine information in a database table. Then you can
use the package initialization section to load these limits into pack-
age data structures. This way, if (when) the data points change,
you don’t have to change the program itself, just some rows and
columns in a table.

Benefits

The only way to change a value is through the set procedure. The values of your
data structures are protected; business rules can be enforced without exception.

You can track all accesses to your data structure—that is, you can put a “watch”
on a variable. This is a debugging feature that isn’t even supported by Oracle’s
debugger API (as of Oracle8i).

By hiding the data structure, you give yourself the freedom to change how that
data is defined without affecting all accesses to the data.

Package data can now be accessed from Oracle Developer tools, such as Forms-
builder. You may not, from “client-side” PL/SQL (i.e., code written in Oracle
Developer components) reference stored package elements unless they are proce-
dures or functions.

Challenges

You need to write get and set programs for your data structures (see the
“Resources” section for help in this matter).

,ch03.14664 Page 47 Friday, June 15, 2001 5:45 PM

48 Chapter 3: Variables and Data Structures

Review existing packages to identify data structures defined in specifications—and
then fix them by moving the structures to the bodies. You will have to rewrite
some existing programs that reference that data, but it will be worth it.

Resources

overdue.pkg : The overdue package.

PLVgen: The PLVgen package of PL/Vision generates “get and set” code for any
scalar variable; this way you won’t have to write the logic again and again.

p_and_l.pkg and watch.pkg : Demonstration of “watching” a variable.

,ch03.14664 Page 48 Friday, June 15, 2001 5:45 PM

49

Chapter4

4
4.Control Structures

Oracle PL/SQL offers a range of constructs that allow you to control the
flow of processing, including:

• For conditional logic: the IF statement

• For loop processing: FOR, WHILE, and simple loops

• For branching logic: the GOTO statement

These constructs are relatively straightforward in syntax and usage. There
remain, however, several best practices you should take into account
when you work with these kinds of statements.

Conditional and Boolean Logic
Follow the best practices in this section when you are using PL/SQL’s IF
statements.

CTL-01: Use ELSIF with mutually exclusive clauses.

When you need to write conditional logic that has several mutually exclusive
clauses (in other words, if one clause is TRUE, no other clause evaluates to TRUE),
use the ELSIF construct:

IF condA THEN
 ...
ELSIF condB THEN
 ...
ELSIF condN THEN
 ...

,ch04.14788 Page 49 Friday, June 15, 2001 5:46 PM

50 Chapter 4: Control Structures

ELSE
 ...
END IF;

Example

At first glance, the following procedure makes sense, but on closer examination,
it’s a mess:

PROCEDURE process_lineitem (line_in IN INTEGER)
IS
BEGIN
 IF line_in = 1
 THEN
 process_line1;
 END IF;
 IF line_in = 2
 THEN
 process_line2;
 END IF;
 ...
 IF line_in = 2045
 THEN
 process_line2045;
 END IF;
END;

Every IF statement is executed and each condition evaluated. You should rewrite
such logic as follows:

PROCEDURE process_lineitem (line_in IN INTEGER)
IS
BEGIN
 IF line_in = 1
 THEN
 process_line1;
 ELSIF line_in = 2
 THEN
 process_line2;
 ...
 ELSIF line_in = 2045
 THEN
 process_line2045;
 END IF;
END;

Benefits

This structure clearly expresses the underlying “reality” of your business logic: if
one condition is TRUE, no others can be TRUE.

ELSIF offers the most efficient implementation for processing mutually exclusive
clauses. When one clause evaluates to TRUE, all subsequent clauses are ignored.

,ch04.14788 Page 50 Friday, June 15, 2001 5:46 PM

Conditional and Boolean Logic 51

CTL-02: Use IF...ELSIF only to test a single, simple condition.

The real world is very complicated; the software we write is supposed to map
those complexities into applications. The result is that we often end up needing to
deal with convoluted logical expressions.

You should write your IF statements in such a way as to keep them as straightfor-
ward and understandable as possible. For example, expressions are often more
readable and understandable when they are stated in a positive form. Conse-
quently, you are probably better off avoiding the NOT operator in conditional
expressions.

Example

It’s not at all uncommon to write or maintain code that’s structured like this:

IF condA AND NOT (condB OR condC)
THEN
 proc1;
ELSIF condA AND (condB OR condC)
THEN
 proc2;
ELSIF NOT condA AND condD
THEN
 proc3;
END IF;

It’s also fairly common to get a headache trying to make sense of all of that. You
can often reduce the trauma of headache by trading off the simplicity of the IF
statement itself (one level of IF and ELSIF conditions) for the simplicity of clauses
within multiple levels:

IF condA
THEN
 IF (condB OR condC)
 THEN
 proc2;
 ELSE
 proc1;
 END IF;
ELSIF condD
THEN
 proc3
END IF;

Don’t forget, by the way, to take into account the possibility of your expressions
evaluating to NULL. This can throw a monkey wrench into your conditional
processing.

Benefits

Following this best practice will make your code easier to read and maintain.

Breaking an expression into smaller pieces can aid maintainability; if and when
the logic changes, you can change one IF clause without affecting the logic of
others.

,ch04.14788 Page 51 Friday, June 15, 2001 5:46 PM

52 Chapter 4: Control Structures

Challenges

Multiple levels of nested IF statements can also decrease readability. You need to
strive for a workable balance.

There’s a tradeoff between efficiency (fewer conditional statements) and ease of
comprehension. “Many times,” wrote one reviewer, “I’ll code an IF or ELSE with a
NULL statement, either to make the code easier to read, or as a placeholder for
future logic. However, I may then find myself repeating logic (such as code that
resets a variable) under multiple ELSE blocks because I’ve broken up the IF
expression into smaller pieces.”

CTL-03: Replace and simplify IF statements with Boolean
expressions.

Sometimes, you will write or come across conditional statements that, while valid,
are unnecessary and cumbersome. Such statements often reflect a lack of under-
standing about how you can and should use Boolean expressions and variables.

In general, if you see or write code like this:

DECLARE
 boolean_variable BOOLEAN;
BEGIN
 IF boolean_variable = TRUE
 THEN
 ...
 ELSIF boolean_variable = FALSE
 THEN
 ...
 END IF;

An Exception to the Rule
A notable exception to this best practice is when you need to negate a large
AND expression in order to find out efficiently whether one value out of a
group is different. For example, I recently needed to test the counts of 10
parallel index-by tables, to see if even one of them was different; if so, it
was an error. Because AND expressions short-circuit on FALSE (whereas
ORs short-circuit on TRUE), this was more efficient than using a group of
ORs. Moreover, the logic read more naturally. For example:

IF NOT (arr1.count = arr2.count
 AND arr1.count = arr3.count
 AND arr1.count = arr4.count AND . . .
 AND arr1.count = arr10.count)
 THEN RAISE e_missing_value;

 —Dan Clamage

,ch04.14788 Page 52 Friday, June 15, 2001 5:46 PM

Loop Processing 53

change it to simpler, more direct code:

DECLARE
 boolean_variable BOOLEAN;
BEGIN
 IF boolean_variable
 THEN
 ...
 ELSIF NOT boolean_variable
 THEN
 ...
 END IF;

Example

In some cases, you can completely remove an IF statement. Consider the following
conditional statement:

IF hiredate < SYSDATE
THEN
 date_in_past := TRUE;
ELSE
 date_in_past := FALSE;
END IF;

If you’ve already validated that hiredate can’t be or isn’t NULL, you can replace the
entire IF statement with this single assignment:

date_in_past := hiredate < SYSDATE;

If hiredate can be NULL, the following statement offers a comparable expression:

date_in_past := NVL (hiredate < SYSDATE, FALSE);

Benefits

Following this best practice will make your code more readable and expressive.

Loop Processing
Follow the best practices in this section when you are using PL/SQL’s looping
statements.

CTL-04: Never EXIT or RETURN from WHILE and FOR loops.

The WHILE and FOR loops include “boundary conditions” that determine:

• When and if a loop should execute at all

• When a loop should stop executing

If you use the EXIT or RETURN statements inside a WHILE or FOR loop, you
cause an unstructured termination from the loop. The resulting code is hard to
trace and debug.

,ch04.14788 Page 53 Friday, June 15, 2001 5:46 PM

54 Chapter 4: Control Structures

Example

Here’s the bottom half of a function that scans the contents of a collection and
returns the row in which a match is found.

 l_count := titles.COUNT;
 FOR indx IN 1 .. l_rowcount
 LOOP
 IF l_match_against = titles(indx)
 THEN
 RETURN indx;
 END IF;
 END LOOP;

 RAISE Exit_Function;
EXCEPTION
 WHEN Exit_Function THEN RETURN NULL;
END;

Now this is some nasty code. You manage to get all the way down to the end of
the executable section, and you are punished with an exception! See MOD-07 for
how this violates best practice for a “funnel-shaped” function.

Of course, you’re not supposed to get to the end of the function. Instead, the
function finds a match and zooms straight out of the function with a RETURN.

Now imagine a function whose body is 200 lines long with nested loops and
several different RETURNs in different parts of the loop. Chaos!

Benefits

By following the maxim “one way in and one way out” for your loops, the
resulting code is much easier to understand and debug. If your loop needs to
execute at least once (like a Pascal REPEAT statement), you’re better off using a
simple LOOP construct and testing for the exit condition with EXIT WHEN.

Challenges

Your exit test in the WHILE expression can become a bit more complex, espe-
cially when you have to replace a natural FOR loop with a more mechanical
WHILE loop. For example, you have a FOR loop expression that iterates over
nested_table.FIRST to nested_table.LAST, but you need to terminate the loop when
you find a matching entry. In order to put the exit test in the iteration scheme, you
have to now use a WHILE loop, initialize and maintain a loop control variable
yourself (for the current offset), and test for the exit condition in the WHILE
expression.

CTL-05: Use a single EXIT in simple loops.

This best practice is another variation on “one way in, one way out.” It suggests
that, whenever possible, you consolidate all exit logic in your simple loop to a
single EXIT (or EXIT WHEN) statement.

,ch04.14788 Page 54 Friday, June 15, 2001 5:46 PM

Loop Processing 55

In general, use the EXIT WHEN statement in place of code like this:

IF <> THEN EXIT; END IF;

because it’s more intuitive and requires less typing.

Example

Here’s part of a program that compares two files for equality. After reading the
next line from each file, it checks for the following conditions:

Did I reach the end of both files?
Are the lines different?
Did I reach the end of just one file?

In each case, set the “return value” for the function and also issue an EXIT
statement:

LOOP
 read_line (file1, line1, file1_eof);
 read_line (file2, line2, file2_eof);

 IF (file1_eof AND file2_eof)
 THEN
 retval := TRUE;
 EXIT;
 ELSIF (line1 != line2)
 THEN
 retval := FALSE;
 EXIT;
 ELSIF (file1_eof OR file2_eof)
 THEN
 retval := FALSE;
 EXIT;
 END IF;
END LOOP;

Then rewrite this loop body as follows:

LOOP
 read_line (file1, line1, file1_eof);
 read_line (file2, line2, file2_eof);

 IF (file1_eof AND file2_eof)
 THEN
 retval := TRUE;
 exit_loop := TRUE;
 ELSIF (line1 != line2)
 THEN
 retval := FALSE;
 exit_loop := TRUE;
 ELSIF (file1_eof OR file2_eof)
 THEN
 retval := FALSE;
 exit_loop := TRUE;
 END IF;
 EXIT WHEN exit_loop;
END LOOP;

,ch04.14788 Page 55 Friday, June 15, 2001 5:46 PM

56 Chapter 4: Control Structures

Sometimes it can be difficult to come up with just one EXIT statement. This usually
occurs when you need to check a condition at the beginning and end of a loop. If
you run into this situation, consider changing to a WHILE loop.

You should also be careful to initialize your return value and your loop termi-
nator variable, to avoid unwanted NULL values that might disrupt your logic.

Benefits

A single EXIT is especially important in large, complex loop bodies; it allows you
to more easily trace and debug your code.

Challenges

Depending on how badly the loop was written initially, you may need to perform
substantial restructuring to improve the loop code.

CTL-06: Use a simple loop to avoid redundant code required
by a WHILE loop.

Generally, you should use a simple loop if you always want the body of the loop
to execute at least once. You use a WHILE loop if you want to check before
executing the body the first time. Since the WHILE loop performs its check “up
front,” the variables in the boundary expression must be initialized. The code to
initialize is often the same code needed to move to the next iteration in the WHILE
loop. This redundancy creates a challenge in both debugging and maintaining the
code: how do you remember to look at and update both?

If you find yourself writing and running the same code before the WHILE loop
and at end of the WHILE loop body, consider switching to a simple loop.

Example

I write a procedure to calculate overdue charges for books; the maximum fine to
be charged is $10, and I will stop processing when there are no overdue books for
a given date. Here is my first attempt at the procedure body:

DECLARE
 l_fine PLS_INTEGER := 0;
 l_date DATE := SYSDATE;
 l_overdue_count NUMBER;
BEGIN
 l_overdue_count :=
 overdue_pkg.countem (
 borrower_id => borrower_in,
 l_date);

 WHILE (l_overdue_count > 0 AND l_fine < 10)
 LOOP
 update_fine_info (l_date, l_one_day_fine);

 l_fine := l_fine + l_one_day_fine;
 l_date := l_date + 1;
 l_overdue_count :=
 overdue_pkg.countem (

,ch04.14788 Page 56 Friday, June 15, 2001 5:46 PM

Loop Processing 57

 borrower_id => borrower_in,
 l_date);
 END LOOP;

As is readily apparent, I duplicate the assignments of values to l_overdue_count. I
would be far better off rewriting this code as follows:

DECLARE
 l_fine PLS_INTEGER := 0;
 l_date DATE := SYSDATE;
 l_overdue_count NUMBER;
BEGIN
 LOOP
 EXIT WHEN
 (l_overdue_count <= 0 OR l_fine >= 10)

 update_fine_info (l_date, l_one_day_fine);

 l_fine := l_fine + l_one_day_fine;

 l_date := l_date + 1;

 l_overdue_count :=
 overdue_pkg.countem (
 borrower_id => borrower_in,
 l_date);
 END LOOP;

Benefits

You avoid redundant code, always bad news in a program, since it increases
maintenance costs and the chance of introducing bugs into your code.

Challenges

If you have established a habit early on of writing WHILE loops, it can be hard to
(a) notice the redundancy and (b) change your style.

CTL-07: Never declare the FOR loop index.

PL/SQL offers two kinds of FOR loops: numeric and cursor. Both have this general
format:

FOR loop index IN loop range
LOOP

loop body
END LOOP;

The loop index is either an integer or a record; in either case, it’s implicitly
declared by the PL/SQL runtime engine. The scope of the loop index variable is
restricted to the body of the loop (between the LOOP and END LOOP statements).

You should never declare a variable for the loop. If you do declare the loop index
variable, you are actually declaring a completely separate (recordtype or numeric)
variable that will (best case) never be used or (worst case) used outside the loop
in a way that is confusing and likely to introduce errors.

,ch04.14788 Page 57 Friday, June 15, 2001 5:46 PM

58 Chapter 4: Control Structures

Example

The developer who worked on the library management system before Jim (a
PL/SQL novice) created this procedure to delete books from the collection by
title:

CREATE OR REPLACE PROCEDURE remove_titles (
 title_in IN book.title%TYPE,
)
IS
 CURSOR book_cur
 IS
 SELECT isbn, author FROM book
 WHERE title LIKE title_in;
 book_rec book_cur%ROWTYPE;
BEGIN
 FOR book_rec IN book_cur
 LOOP
 te_book.rem (book_rec.isbn);
 END LOOP;
END;

It works just fine (no bugs reported), but Jim has been asked to modify the proce-
dure to display the last book removed. So he adds this code after the FOR loop:

 END LOOP;
 pl (book_rec.isbn || ' – ' ||
 book_rec.author);
END;

The code compiles, but Jim spends the next two hours banging his head against
the wall trying to figure out why the last book information keeps coming up
NULL. He doesn’t question the existing code, since it worked and was written by a
high-priced consultant. It must be Jim’s fault.

In fact, the original code was faulty. The declaration of book_rec was unnecessary
and made Jim’s error possible.

Benefits

By avoiding unnecessary code, you make it less likely for programmers to intro-
duce errors into the code at some later point.

You need not take out “programmer’s insurance”: “Gee, I don’t know if I need to
declare that or not, so I’d better declare it.” Instead, you make certain you under-
stand how PL/SQL works and write appropriate code.

CTL-08: Scan collections using FIRST, LAST, and NEXT in
loops.

A collection in PL/SQL is like a single-dimensional array. A collection differs from
an array, however, in that two of the three types of collections (nested tables and
index-by tables) can be sparse, which means that the defined rows in the collec-
tion need not be sequentially defined. You can, in other words, assign a value to
row 10 and a value to row 10,000, and now rows will exist between those two.

,ch04.14788 Page 58 Friday, June 15, 2001 5:46 PM

Loop Processing 59

If you scan a collection with a FOR loop and the collection is sparse, the FOR loop
tries to access an undefined row and raise a NO_DATA_FOUND exception.
Instead, use the FIRST and NEXT methods to scan forward through a collection,
and use LAST and PRIOR to scan backwards

Example

I have decided to help all of my co-programmers by providing a package that
offers a standard collection type (list of strings) and some utility programs to
manipulate collections defined on that type. Here is the package specification:

CREATE OR REPLACE PACKAGE mycollection
IS
 TYPE string_tt IS TABLE OF VARCHAR2 (2000)
 INDEX BY BINARY_INTEGER;

 PROCEDURE show (list_in IN string_tt);

 FUNCTION eq (list1_in IN string_tt, list2_in IN string_tt)
 RETURN BOOLEAN;
END mycollection;

By using this package, I can easily declare a collection, display its contents, and
even compare two collections of the same type to see if they are equal. That
sounds handy! The implementation of this utility package, however, will deter-
mine how widely my code is used. Here’s my first attempt:

CREATE OR REPLACE PACKAGE BODY mycollection
IS
 PROCEDURE show (list_in IN string_tt)
 IS
 BEGIN
 FOR indx IN list_in.FIRST .. list_in.LAST
 LOOP
 pl (list_in (indx));
 END LOOP;
 END show;

 FUNCTION eq (list1_in IN string_tt, list2_in IN string_tt)
 RETURN BOOLEAN
 IS
 retval BOOLEAN := TRUE;
 indx PLS_INTEGER := list1_in.FIRST;
 l_last1 PLS_INTEGER := list1_in.LAST;
 BEGIN
 WHILE retval
 AND indx <= l_last1
 LOOP
 retval := list1_in (indx) = list2_in (indx);
 indx := indx + 1;
 END LOOP;
 RETURN retval;
 END eq;
END mycollection;
/

,ch04.14788 Page 59 Friday, June 15, 2001 5:46 PM

60 Chapter 4: Control Structures

At first glance, this seems fine. I throw together a test and am pleased with the
results, as shown here:

SQL> DECLARE
 2 family mycollection.string_tt;
 3 pets mycollection.string_tt;
 4 BEGIN
 5 family (1) := 'Veva';
 6 family (2) := 'Eli';
 7 family (3) := 'Chris';
 8 family (4) := 'Steven';
 9 mycollection.show (family);
 10 pets (1) := 'Mercury';
 11 pets (2) := 'Moshe Jacobawitz';
 12 pets (3) := 'Sister Itsacat';
 13 bpl (mycollection.eq (family, pets));
 14 END;
 15 /
Veva
Eli
Chris
Steven
FALSE

Those two collections certainly aren’t identical. Well, what a handy little package! I
enthusiastically tell all my programming friends that I have a present for them and
invite them to use mycollection. Not an hour goes by before Sriniva asks me to
visit her cubicle. “What’s this all about?” she asks me (with a subtext of “Gee, I
guess your code is not to be trusted…”):

SQL> DECLARE
 2 authors mycollection.string_tt;
 3 pets mycollection.string_tt;
 4 BEGIN
 5 FOR rec IN (SELECT * FROM author)
 6 LOOP
 7 authors (rec.author_id) := rec.last_name;
 8 END LOOP;
 9
 10 mycollection.show (authors);
 11 END;
 12 /
FEUERSTEIN
DECLARE
*
ERROR at line 1:
ORA-01403: no data found
ORA-06512: at "SCOTT.MYCOLLECTION", line 8

I scratch my head for a while, then ask to see the data in the authors table. “Why
should that matter?” is the response. It’s a good response. Embarrassment soon
propels me to the heart of the difficulty: her author_id values are probably not
sequential—but my loops assume a densely filled collection!

Check out the myCollection.pkg file for a rewrite of the package body that fixes
this problem.

,ch04.14788 Page 60 Friday, June 15, 2001 5:46 PM

Loop Processing 61

Benefits

Your scan is less likely to raise an exception.

This is the most efficient way to scan a collection. You can, as is shown in the files
listed under “Resources,” build protection within the FOR loop to avoid raising
NO_DATA_FOUND, but then you might well do excessive looping. What if, for
example, the second_row_in were two million?

Resources

plsqlloops.pro : Script to compare the performance of several alternatives to scan-
ning a collection.

myCollection.pkg: Implementation of a utility package that displays the contents of
a collection and compares the contents of two collections.

CTL-09: Move static expressions outside of loops and SQL
statements.

Whenever you set out to tune your PL/SQL programs, you should first take a look
at your loops. Any inefficiency inside a loop’s body will be magnified by the
multiple executions of that code.

A common mistake is to put code that is static or unchanging for each iteration of
the loop inside the body. When you can identify such situations, extract the static
code, assign the outcomes of that code to one or more variables, and then refer-
ence those variables inside the loop.

Example

This procedure summarizes book reviews. It’s run every morning at 8 A.M. and
takes about 15 minutes to complete:

CREATE OR REPLACE PROCEDURE summarize_reviews (
 summary_title_in IN VARCHAR2,
 isbn_in IN book.isbn%TYPE)
IS
 CURSOR review_cur IS
 SELECT text,
 TO_CHAR (SYSDATE, 'MM/DD/YYYY') today
 FROM book_review
 WHERE isbn = isbn_in;
BEGIN
 FOR review_rec IN review_cur
 LOOP
 IF LENGTH (review_rec.text) > 100
 THEN
 review_rec.text :=
 SUBSTR (review_rec.text, 1, 100);
 END IF;

 review_pkg.summarize (
 UPPER (summary_title_in),
 today,

,ch04.14788 Page 61 Friday, June 15, 2001 5:46 PM

62 Chapter 4: Control Structures

 UPPER (review_rec.text)
);
 END LOOP;
END;
/

There are a number of problems with this code:

• Since my job starts and finishes on the same day, I don’t need to select SYS-
DATE with each row of my query. And unless I really want “today” to be a
string expression, or I am ready to absorb the overhead of multiple implicit
conversions, I should use TRUNC to get rid of the time element.

• I write over the text field of the review_rec record. While this is allowed by
PL/SQL, you are generally better off not modifying the index variable loop.
Treat it as a constant.

• Since my summary_title_in argument never changes, I shouldn’t UPPER case
in each iteration of the loop.

• Rather than check the length of the text for each row and then SUBSTR (and
UPPER case), why not just SUBSTR inside SQL?

Here is a rewrite of the summarize_reviews procedure:

CREATE OR REPLACE PROCEDURE summarize_reviews (
 summary_title_in IN VARCHAR2,
 isbn_in IN book.isbn%TYPE)
IS
 l_summary book_types.summary_t
 := UPPER (summary_title_in);

 l_today CONSTANT DATE := TRUNC (SYSDATE);

 CURSOR review_cur IS
 SELECT UPPER (SUBSTR (text, 1, 100)) text
 FROM book_review
 WHERE isbn = isbn_in;
BEGIN
 FOR review_rec IN review_cur
 LOOP
 review_pkg.summarize (
 l_summary, l_today, review_rec.text
);
 END LOOP;
END;
/

You can, in general, expect the performance of built-in functions
such as SUBSTR to work more efficiently in SQL than in PL/SQL, so
move the processing to the SQL layer whenever possible.

Benefits

Your code doesn’t do any unnecessary work and so executes more efficiently.

,ch04.14788 Page 62 Friday, June 15, 2001 5:46 PM

Miscellaneous 63

Challenges

Don’t be obsessed with this sort of optimization as you write your code. It’s theo-
retically true that calling UPPER just once before the loop is more efficient
compared to calling it 100 times inside the loop. It’s also very likely to be the case
that the cycles saved on this optimization are never noticed by the user. You are
always better off saving the bulk of your optimization efforts until you have identi-
fied the bottlenecks in your application as a whole.

Resources

insql.sql: A script to compare the performance of functions in SQL versus PL/SQL.

Miscellaneous
The best practices in this section are grouped together simply because they don’t
fall into either of the other categories.

CTL-10: Use anonymous blocks within IF statements to
conserve resources.

One of the nice things about PL/SQL is that you, the developer, can define any set
of executable statements as a distinct block, with its own declaration, executable,
and exception sections.

If you notice that certain operations and data structures aren’t needed unless a
certain condition is satisfied, move all the execution of those operations and the
declaration of those data structures inside the conditional statement. The result is
that you won’t incur the overhead (CPU or memory) unless it’s absolutely needed.

Example

In the following block, I declare a set of local variables and even initialize l_name
with a function that usually takes 10 seconds to execute (min_balance_account).
But when I write my block, it turns out that in many situations, those structures
are ignored:

DECLARE
 TYPE account_tabtype IS TABLE
 OF account%ROWTYPE INDEX BY BINARY_INTEGER;
 l_accounts account_tabtype;

 l_name VARCHAR2(2000) :=
 min_balance_account (SYSDATE);
BEGIN
 IF balance_too_low (1056)
 THEN
 use_collection (l_accounts);
 use_name (l_name);
 ELSE

,ch04.14788 Page 63 Friday, June 15, 2001 5:46 PM

64 Chapter 4: Control Structures

 -- No use of l_accounts or l_name
 ...
 END IF;
END;

Once I recognize this situation (usually identified through a code walkthrough), I
should change it to this:

BEGIN
 IF balance_too_low (1056)
 THEN
 DECLARE
 TYPE account_tabtype IS TABLE
 OF account%ROWTYPE
 INDEX BY BINARY_INTEGER;
 l_accounts account_tabtype;

 l_name VARCHAR2(2000) :=
 min_balance_account (SYSDATE);
 BEGIN
 use_collection (l_accounts);
 use_name (l_name);
 END;
 ELSE
 -- No use of l_accounts or l_name
 ...
 END IF;
END;

Benefits

Your programs won’t execute unnecessary code, improving performance and
reducing memory requirements for the program.

Challenges

It can be hard to realize as you first write your program that this kind of situation
exists. Use code walkthroughs to uncover these optimization opportunities. You
can also use Oracle8i ’s code profiler (the DBMS_PROFILER built-in package) to
identify unused or little-used code. A number of PL/SQL IDEs offer a GUI inter-
face to this profiler.

Resources

The following products currently offer GUIs to DBMS_PROFILER:

http://www.quest.com/sql_navigator/ : SQL Navigator.

http://www.sfi-software.com/sql-programmer.htm : SQL Programmer.

http://www.embarcadero.com/products/Develop/develop.htm: Rapid SQL.

,ch04.14788 Page 64 Friday, June 15, 2001 5:46 PM

Miscellaneous 65

CTL-11: Label and highlight GOTOs if using this normally
unnecessary construct.

I suppose that it was thorough of Oracle to include a GOTO statement in the
PL/SQL language. This statement, however, should generally be avoided, as it
leads to unstructured code design that is hard to analyze and debug.

There are scenarios in which a GOTO can be justified; these mostly relate to going
into existing spaghetti code to fix a bug or enhance the code. For an extensive
review of GOTO-related issues, see Chapter 16 in Steve McConnell’s book, Code
Complete.

Example

Here is a use of GOTO that calls attention to itself:

CREATE OR REPLACE PROCEDURE someone_elses_mess
/*
|| Author: Longgone Consultant
|| Maintained by: Sad Employee
||
|| Modification History
|| When Who What
|| --
|| 11/2000 Sad E. Fixed bug in overdue logic.
|| Used GOTO to bypass Gordian
|| Knot of code left by L.C.
*/
IS
BEGIN
 IF ... THEN
 IF ... THEN
 FOR rec IN cur LOOP
 -- 11/2000 Bypass with GOTO
 GOTO <<quick_exit>>
 END LOOP;
 ... lots more code
 END IF;
 -- 11/2000 GOTO Target
 <<quick_exit>>
 END IF;

Benefits

Even if you can, at times, justify the use of a GOTO, you can almost always
achieve the same effect with a more structured and more easily understood use of
conditional and loop logic.

Resources

Code Complete, by Steve McConnell: See Chapter 16, Unusual Control Structures,
for an in-depth discussion of the GOTO statement and recommendations for
when it can justifiably be used.

,ch04.14788 Page 65 Friday, June 15, 2001 5:46 PM

66

Chapter5

5
Exception
Handling 5.

Even if you write such amazing code that it contains no errors and never
acts inappropriately, your users might still use your program incorrectly.
The result? Situations that cause programs to fail. PL/SQL provides excep-
tions, a flexible and powerful architecture that raises, traps, and handles
errors.

Before getting into specific best practices, you should be sure to under-
stand how exception handling works. For example, remember that an
exception section handles only errors raised in the executable section of
the block, not errors raised in the declaration section.

Next and even more important, I offer the following meta-best practice of
this chapter.

EXC-00: Set guidelines for application-wide error handling
before you start coding.

It’s impractical to define EXCEPTION sections in your code after the fact—in other
words, after the programs have been written. The best way to implement applica-
tion-wide, consistent error handling is to use a standardized package that contains
at least the following elements:

• Procedures that perform most exception-handling tasks, such as writing to an
error log.

• A raise program that hides the complexity of RAISE_APPLICATION_ERROR
and application-specific error numbers.

• A function that returns error message text for a given error number.

,ch05.14917 Page 66 Friday, June 15, 2001 5:46 PM

Raising Exceptions 67

These ideas are covered in specific best practices in this chapter. A simple error-
handling package may be found in the err.pkg file on the Oracle PL/SQL Best
Practices web site.

Raising Exceptions
The following best practices cover how to check for conditions that might require
the raising of an exception, deciding how to propagate exception information, and
how to best raise exceptions.

EXC-01: Verify preconditions using standardized assertion
routines that raise violation exceptions.

Every time you write a program, you make certain assumptions. A user of your
program doesn’t necessarily know about those assumptions. If you don’t “code
defensively” and make sure that your assumptions aren’t violated, your programs
can break down in unpredictable ways.

Use assertion routines to make it as easy as possible to validate assumptions in a
declarative fashion. These routines, standardized for an entire application, take
care of all the housekeeping: what to do when a condition fails, how to report the
problem, and whether and how to stop the program from continuing.

Example

Here’s a simple assertion program that checks to see if a condition is TRUE. If the
condition is FALSE or NULL, the procedure displays a message to the screen and
then raises an exception (if so desired) with dynamic PL/SQL (this implementa-
tion relies on Oracle8i ‘s native dynamic SQL):

CREATE OR REPLACE PROCEDURE assert (
 condition_in IN BOOLEAN,
 message_in IN VARCHAR2,
 raise_exception_in IN BOOLEAN := TRUE,
 exception_in IN VARCHAR2
 := 'VALUE_ERROR'
)
IS
BEGIN
 IF NOT condition_in
 OR condition_in IS NULL
 THEN
 pl ('Assertion Failure!');
 pl (message_in);

 IF raise_exception_in
 THEN
 EXECUTE IMMEDIATE
 'BEGIN RAISE ' || exception_in || '; END;';
 END IF;
 END IF;
END assert;

,ch05.14917 Page 67 Friday, June 15, 2001 5:46 PM

68 Chapter 5: Exception Handling

With this program in place, you can easily, and in a declarative fashion, make sure
that all inputs are hunky-dory before proceeding with your business logic. Here’s
an example:

BEGIN
 assert (isbn_in IS NOT NULL,
 'The ISBN must be provided.');

 assert (page_count_in < 2000,
 'Readers don't like big, fat books!');

Benefits

With easy-to-use, declarative assertion routines, you’re more likely to actually
check for valid inputs and conditions.

Validation will occur in a standard way throughout your application if everyone
uses the same assertion programs.

Challenges

Develop a habit of thinking through and asserting all your assumptions at the top
of your executable section, before you start writing any business logic.

Resources

assert.pro : A simple assertion procedure

assert.pkg : An assertion package that offers assertions for different conditions

EXC-02: Use the default exception-handling model to
communicate module status back to calling PL/SQL
programs.

Watch out for carrying baggage from other languages into the world of PL/SQL.
Your last language might not have had a sophisticated error-handling architecture.
As a consequence, you relied on parameters in every program to pass back error
status (code and message).

Don’t do this in PL/SQL! Rely on the default model: raise exceptions and handle
those exceptions in the separate exception section of your blocks.

Example

Here’s the kind of code you want to avoid:

BEGIN
 overdue.analyze_status (
 title_in,
 start_date_in,
 error_code,
 error_msg);

 IF error_code != 0
 THEN
 err.log (...);

,ch05.14917 Page 68 Friday, June 15, 2001 5:46 PM

Raising Exceptions 69

 GOTO end_of_program;
 END IF;

 overdue.send_report (
 error_code,
 error_msg);

 IF error_code != 0
 THEN
 err.log (...);
 GOTO end_of_program;
 END IF;

Benefits

Your executable sections are clean, simple, and easy to follow. You don’t have to
check for status after every program call. You simply include an exception section
to trap and deal with crises as they arise.

Challenges

It can be hard to break old habits.

You might inherit code that looks like the example. In this case, I would suggest
to your manager that it’s worth it to proactively clean up the code.

If you are calling PL/SQL from a non-Oracle frontend, you may need to pass back
error information (see EXC-03).

EXC-03: Catch all exceptions and convert to meaningful
return codes before returning to non-PL/SQL host programs.

Suppose that you are calling PL/SQL programs from Visual Basic, Powerbuilder,
Java, or some other language. These non-Oracle development languages may not
understand, or be able to handle, PL/SQL exceptions very gracefully. In this situa-
tion, you may need to pass back error status (code and message) with at least
some of your programs.

You should do this only on an “exception” basis—as needed. The best way to do
it is to overload the original program in your package with another of the same
name and two additional parameters.

Example

Suppose you need to call overdue.analyze_status both from within the Oracle
RDBMS (i.e., from another stored procedure) and from within a Visual Basic appli-
cation. You can use package overloading to offer the “same” program with a
different interface:

CREATE OR REPLACE PACKAGE overdue
IS
 PROCEDURE analyze_status (
 title_in IN book.title%TYPE,
 start_date_in IN DATE := SYSDATE);

,ch05.14917 Page 69 Friday, June 15, 2001 5:46 PM

70 Chapter 5: Exception Handling

 overdue.analyze_status (
 title_in IN book.title%TYPE,
 start_date_in IN DATE := SYSDATE,
 error_code OUT INTEGER,
 error_msg OUT VARCHAR2);

Benefits

Developers can call PL/SQL stored code and gracefully check for errors in the way
that’s most appropriate in their own programming language.

The datatype for the error code and message must be generic ANSI SQL types,
not Oracle-specific types. For example, you can’t use a BOOLEAN parameter or
PL/SQL index-by table as a return value for any function that interfaces with
non-PL/SQL tools.

EXC-04: Use your own raise procedure in place of explicit
calls to RAISE_APPLICATION_ERROR.

When it comes to managing errors, Oracle requires a lot of developers. If you’re
raising a “system” exception like NO_DATA_FOUND, you use RAISE. But when
you want to raise an application-specific error, you use RAISE_APPLICATION_
ERROR. If you use the latter, you have to provide an error number and message.
This leads to unnecessary and damaging hard coding (see EXC-09).

A more fail-safe approach is to provide a predefined raise procedure that automati-
cally checks the error number and determines the correct way to raise the error.
An example of such a procedure may be found in the err.pkg file on the Oracle
PL/SQL Best Practices web site, and is described briefly in the following section.

Example

Instead of writing code like this:

RAISE_APPLICATION_ERROR (
 -20734,
 'Employee must be 18 years old.');

you should write code like this:

err.raise (errnums.emp_too_young);

Here’s an example of how you might construct a generic exception raiser (from
err.pkg):

 PROCEDURE raise (
 errcode IN PLS_INTEGER := NULL,
 errmsg IN VARCHAR2 := NULL
)
 IS
 l_errcode PLS_INTEGER := NVL (errcode, SQLCODE);
 l_errmsg PLS_INTEGER := NVL (errmsg, SQLERRM);
 BEGIN
 IF l_errcode BETWEEN -20999 AND -20000

,ch05.14917 Page 70 Friday, June 15, 2001 5:46 PM

Raising Exceptions 71

 THEN
 RAISE_APPLICATION_ERROR (l_errcode, l_errmsg);

 /* Use positive error numbers -- lots to choose from! */
ELSIF l_errcode > 0

 AND l_errcode NOT IN (1, 100)
 THEN
 RAISE_APPLICATION_ERROR (-20000, l_errcode || '-' || l_errmsg);

 /* Re-raise any other exception using dynamic PL/SQL. */
ELSIF l_errcode != 0

 THEN
 PLVdyn.plsql (
 'DECLARE myexc EXCEPTION; ' ||
 ' PRAGMA EXCEPTION_INIT (myexc, '
 || TO_CHAR (l_errcode) || ');'
 ||'BEGIN RAISE myexc; END;'
);
 END IF;
 END;

Benefits

Individual developers don’t have to make judgment calls about how they should
raise the exception (RAISE? RAISE_APPLICATION_ERROR?). They simply pass the
appropriate error number (hopefully identified via a named constant) and let the
raise “engine” do the heavy lifting.

You can choose to use positive error numbers for your own application-specific
exceptions. By taking this approach, you aren’t constrained to error numbers
between –20,999 and –20,000, some of which Oracle also uses. The err.raise
procedure intercepts positive error numbers and passes them back to the calling
program as an exception by bundling the error number and message into a single
string in the call to RAISE_APPLICATION_ERROR.

Challenges

First, you must set your standards on what kind of exceptions (the numbers and
messages, in particular) you will use for your application. Then you need to make
sure that everyone uses the err.raise procedure.

Resources

err.pkg : A simple, but functional prototype of a generic error-handling package.

EXC-05: Only RAISE exceptions for errors, not to branch
execution control.

The RAISE statement is an easy and powerful way to abort normal processing in a
program and immediately “go to” the appropriate WHEN handler. You should,
however, never use RAISE in this way. You should raise an exception only when
an error has occurred, not to control program flow.

,ch05.14917 Page 71 Friday, June 15, 2001 5:46 PM

72 Chapter 5: Exception Handling

Example

Here’s a program that demonstrates the problem; it performs a full table scan of a
collection and immediately exits when it finds a match. The exit_function
exception aborts the function if the input title is NULL; it’s also used as the last line
in the function:

CREATE OR REPLACE FUNCTION book_from_list (
 list_in IN book_tabtype,
 title_in IN book.title%TYPE)
RETURN book%ROWTYPE
IS
 exit_function EXCEPTION;
BEGIN
 IF title_in IS NULL
 THEN
 RAISE exit_function;
 END IF;

 FOR indx IN list_in.FIRST .. list_in.LAST
 LOOP
 IF list_in(indx).title = title_in
 THEN
 RETURN list_in(indx);
 END IF;
 END LOOP;

 RAISE exit_function;

EXCEPTION
 WHEN exit_function THEN RETURN NULL;
END;

Whew. Strange stuff. You manage to make it all the way to the end of the func-
tion, and then you are punished by having an exception raised! This is very poorly
structured code: hard to understand and hard to maintain.

Here’s a better approach:

CREATE OR REPLACE FUNCTION book_from_list (
 list_in IN book_tabtype,
 title_in IN book.title%TYPE)
RETURN book%ROWTYPE
IS
 indx PLS_INTEGER;
 retval book%ROWTYPE;
BEGIN
 IF title_in IS NOT NULL
 THEN
 indx := list_in.FIRST;
 LOOP
 IF list_in(indx).title = title_in
 THEN
 retval := list_in(indx);
 END IF;

,ch05.14917 Page 72 Friday, June 15, 2001 5:46 PM

Raising Exceptions 73

 indx := list_in.NEXT (indx);
 END LOOP;
 END IF;
 RETURN retval;
END;

Be on the lookout for a clear symptom of this misuse of error handling: declared
exceptions whose names describe actions (exit_function) rather than errors
(null_title).

Benefits

Your code is more straightforward and is easier to read, debug, and maintain.

EXC-06: Do not overload an exception with multiple errors
unless the loss of information is intentional.

Don’t declare one generic exception such as bad_data and then raise that excep-
tion under different circumstances. Users of your code will have trouble
understanding precisely what caused the problem. Instead, declare a separate
exception for each different kind of failure.

Example

Oracle is guilty of violating this best practice, as can be seen with NO_DATA_
FOUND. This exception can be raised by a SELECT INTO that finds no rows, by
attempting to read an undefined row in a collection, or by reading past the end of
a file. How can you tell what went wrong inside your NO_DATA_FOUND handler?
This dilemma is shown in this example:

CREATE OR REPLACE PROCEDURE two_reads
IS
 l_title book.title%TYPE;
 l_line VARCHAR2(1023);
 fid UTL_FILE.FILE_TYPE;
BEGIN
 SELECT title INTO l_title
 FROM emp
 WHERE 1 = 2;

 fid := UTL_FILE.FOPEN (
 'c:\temp', 'justoneline.txt', 'R');
 UTL_FILE.GET_LINE (fid, l_line);
 UTL_FILE.GET_LINE (fid, l_line);

EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 pl ('Who did that?');
END two_reads;

If you do run into situations like this, whether due to Oracle’s design or another
developer in your organization, you can use nested blocks to avoid the ambi-
guity. By declaring a block around a set of lines of code, you can restrict the

,ch05.14917 Page 73 Friday, June 15, 2001 5:46 PM

74 Chapter 5: Exception Handling

propagation of the ambiguous exception and transform that exception into a
unique identifier. Here’s an example of this approach:

CREATE OR REPLACE PROCEDURE two_reads
IS
 l_title book.title%TYPE;
 l_line VARCHAR2(1023);
 fid UTL_FILE.FILE_TYPE;
 no_table_data EXCEPTION;
 no_file_data EXCEPTION;
BEGIN
 BEGIN
 SELECT title INTO l_title
 FROM emp
 WHERE 1 = 2;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN RAISE no_table_data;
 END;

 BEGIN
 fid := UTL_FILE.FOPEN ('c:\temp', 'justoneline.txt', 'R');
 UTL_FILE.GET_LINE (fid, l_line);
 UTL_FILE.GET_LINE (fid, l_line);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN RAISE no_file_data;
 END;

EXCEPTION
 WHEN no_table_data
 THEN
 pl ('Query on table returned no data!');
 WHEN no_file_data
 THEN
 pl ('Attempt to read past end-of-file!');
END two_reads;

Benefits

Developers can check for, and handle, the different kinds of errors your code
might produce.

Resources

excquiz6.sql and excquiz6a.sql : Demonstrations of how you can transform a
single, overused exception such as NO_DATA_FOUND into multiple, distinct
exceptions.

Handling Exceptions
Once an exception is raised, it generally needs to be handled. These best prac-
tices offer advice on writing exception-handling sections.

,ch05.14917 Page 74 Friday, June 15, 2001 5:46 PM

Handling Exceptions 75

EXC-07: Handle exceptions that cannot be avoided but can
be anticipated.

If you are writing a program in which you can predict that a certain error will
occur, you should include a handler in your code for that, allowing for a graceful
and informative failure.

The form that this failure takes doesn’t, by the way, necessarily need to be an
exception. When writing functions, you may well decide that in the case of certain
exceptions, you will want to return a value such as NULL, rather than allow an
exception to propagate out of the function.

Example

This recommendation is easily demonstrated with the ubiquitous SELECT INTO
lookup query. An error that often occurs is NO_DATA_FOUND, which indicates
that the query didn’t identify any rows. Now, following SQL-04, I put SELECT
INTO inside a function, but I don’t allow the NO_DATA_FOUND exception to
propagate out of the function:

CREATE OR REPLACE FUNCTION book_title (
 isbn_in IN book.isbn%TYPE)
RETURN book.title%TYPE
IS
 l_ title book.title%TYPE;
BEGIN
 SELECT title INTO l_title
 FROM book
 WHERE isbn =isbn_in;
 RETURN l_rec.title;
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 RETURN NULL;
END;

In other words, if the ISBN passed to the function finds no book, return NULL for
the title. This is an unambiguous indicator of failure; a book must have a title.

I have decided in this case not to allow NO_DATA_FOUND to propagate (go
unhandled) out of the function. I use a SELECT INTO (implicit query) to fetch the
book title; Oracle’s implementation of implicit queries means that NO_DATA_
FOUND (as well as TOO_MANY_ROWS) might be raised. That doesn’t mean,
however, that within my function, it really is an exception when no row is found.
In fact, I might be expecting to not find a match.

By returning NULL rather than propagating an exception, I leave it up to the user
of my function to decide how to deal with a “no row found” situation. She might
raise an exception, as in:

BEGIN
 l_title := book_title (l_isbn);
 IF l_title IS NULL

,ch05.14917 Page 75 Friday, June 15, 2001 5:46 PM

76 Chapter 5: Exception Handling

 THEN
 RAISE NO_DATA_FOUND;
 END IF;

or she might decide that such a result means that everything is, in fact, as desired:

BEGIN
 l_title := book_title (l_isbn);
 IF l_title IS NULL
 THEN
 process_new_book (l_isbn);
 END IF;

Benefits

Your programs are better-behaved and more likely to be useful and used. If you
let the exception propagate out, this function would be unpredictable and hard to
integrate into your application, since exception handlers must be coded in the
caller’s code block.

Challenges

It’s one thing to set a standard, and quite another to have everyone implement
programs according to the standard. See MOD-02 for ideas on generating func-
tions that comply with your best practices.

EXC-08: Avoid hard-coded exposure of error handling by
using standard, declarative procedures.

The best way to achieve consistent, high-quality error handling throughout your
application is to offer a set of predefined procedures that do the basic plumbing of
error handling: record the error information if desired, propagate the exception,
and so on.

It’s crucial then to make certain that development team members always and only
use these procedures in their WHEN clauses.

Example

Here’s the kind of code you should never write inside an exception handler:

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 v_msg := 'No company for id ' || TO_CHAR (v_id);
 v_err := SQLCODE;
 v_prog := 'fixdebt';
 INSERT INTO errlog VALUES
 (v_err, v_msg, v_prog, SYSDATE, USER);

 WHEN OTHERS THEN
 v_err := SQLCODE;
 v_msg := SQLERRM;
 v_prog := 'fixdebt';

,ch05.14917 Page 76 Friday, June 15, 2001 5:46 PM

Handling Exceptions 77

 INSERT INTO errlog VALUES
 (v_err, v_msg, v_prog, SYSDATE, USER);
 RAISE;

There are several problems with this code:

• Exposure of logging method. What if you change the structure of the table, or
decide to write to a file instead? Every handler has to change.

• Hard-coded program names. This information is available from the built-in
function DBMS_UTILITY.FORMAT_CALL STACK.

A better approach is to rely on predefined handlers. Here’s a rewrite of the same
exception section:

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 err.handle (
 'No company for id ' || TO_CHAR (v_id),
 log => TRUE,
 reraise => FALSE);
 WHEN OTHERS THEN
 err.handle (log => TRUE, reraise => TRUE);

Benefits

All developers handle errors in the same way, achieving consistency in logging
and also in user presentation of error feedback.

Enhancements or changes in logging standards can be easily (almost instantly)
implemented.

Challenges

Well, you need to implement the generic package, but the predefined procedure
gives you a functional starting point for that.

Developers must be trained in using the package, and then they must use it.

Use code walkthroughs and/or automated code analysis to ensure that program-
mers are following the standard.

Resources

err.pkg: A simple, but functional prototype of a generic error-handling package.

EXC-09: Use named constants to soft-code application-specific
error numbers and messages.

Oracle allocates 1000 error numbers, between –20,000 and –20,999, to use for our
own application-specific errors (such as “Employee must be 18 years old” or
“Reservation date must be in the future”).

Define all error numbers and their associated messages in a database table or
operating-system file. Build a package that gives names to these errors, and then
raise the errors using those names and not any hard-coded values.

,ch05.14917 Page 77 Friday, June 15, 2001 5:46 PM

78 Chapter 5: Exception Handling

Example

Here’s a fairly typical tangle of hard-coded, error-prone programming with RAISE_
APPLICATION_ERROR. Sam Developer is told to write a procedure to stop
updates and inserts when an employee is younger than 18. Sam thinks to himself
“Surely no one has used error 20734 yet, so I will use it” and produces this code:

CREATE OR REPLACE PROCEDURE check_hiredate (
 date_in IN DATE)
IS
BEGIN
 IF date_in < ADD_MONTHS (SYSDATE, -1 * 12 * 18)
 THEN
 RAISE_APPLICATION_ERROR (
 -20734,
 'Employee must be 18 years old.');
 END IF;
END;

Check out all that hard-coding! And while Sam is writing his code, of course,
Natasha Programmer also decides that 20734 is a fine error number. What a mess!
Here’s a much cleaner approach:

CREATE OR REPLACE PROCEDURE check_hiredate (
 date_in IN DATE)
IS
BEGIN
 IF emp_rules.emp_too_young (date_in)
 THEN
 err.raise (errnums.emp_too_young);
 END IF;
END;

First, I have moved the logic defining a “too young” employee to a function, as
recommended in MOD-01. For error handling, Sam now simply knows that he
calls the err.raise procedure to raise his error. Which error? Sam goes to the list of
predefined exceptions (either in documentation or via a GUI interface) and picks,
by name, the one that matches.

Benefits

Developers avoid conflicts over the same error number; such conflicts can lead to
massive confusion.

Developers don’t have to decide the best way to raise an error. Just call the
err.raise procedure and let it do the work for you.

Challenges

The same as for EXC-08 (predefined handler procedures).

You need to build code and data to maintain known errors, associated with
numbers and error text.

,ch05.14917 Page 78 Friday, June 15, 2001 5:46 PM

Handling Exceptions 79

Resources

msginfo.pkg : Infrastructure package and associated table to manage error numbers
and text, and to generate a package with named exceptions.

EXC-10: Include standardized modules in packages to dump
package state when errors occur.

When an error occurs in one of your PL/SQL blocks, it’s often useful to determine
the values of persistent package variables at the time of the failure. You can do
this to some extent with the debuggers available with many IDEs. That approach
doesn’t, however, give you access to the data values within a user’s application
session.

One way to obtain this information is to write a “dump” procedure in each of your
packages. This dump procedure displays or records the contents of any relevant
variables or data structures—whatever you determine is of value inside that
package. You can then feed this information to an error handler, to provide as
much information as possible to the person debugging your code.

Providing such dump procedures can dramatically reduce the time spent inserting
debug messages only to be removed later, as well as to record problems that
appear intermittently, and are hard to reproduce.

This approach obviously relies on the conformance to standards established in
advance, so that method names and stack formats can be interpreted, but all of
these details can be hidden from view in a package, such as the error_pkg
included in the callstack.sql file (see the “Resources” section).

This package (provided by Dwayne King, ace reviewer and PL/SQL developer)
keeps track of the call stack by recording in a PL/SQL table each piece of code as
it “announces” itself. It then uses that stack to determine which dump methods
need to be called when an error occurs.

Unfortunately, there’s no reliable (and supported) way right now to easily deter-
mine which packages “have state” even if they aren’t in the call stack, but this may
be possible in the future. Another straightforward exercise is to extend this
package to write to a log file or pipe instead of just using the standard DBMS_
OUTPUT package.

Example

The demo_pkg file (see the “Resources” section) conforms to the “dump API” by
including a procedure named instantiate_error_context in the specification:

CREATE OR REPLACE PACKAGE demo_pkg
IS
 PROCEDURE proc1;

 PROCEDURE instantiate_error_context;
END;
/

,ch05.14917 Page 79 Friday, June 15, 2001 5:46 PM

80 Chapter 5: Exception Handling

The proc1 procedure sets the module name in the stack, assigns a value to a vari-
able, and then calls proc2, which also “announces” itself and modifies a package
variable. It then, however, raises an EXCEPTION:

PROCEDURE demo_pkg.proc1 IS
BEGIN
 --announce entry into this module
 error_pkg.set_module_name ('demo_pkg.proc1');

 -- Application processing here.
 application.field_1 := 'test string';

 proc2;

 error_pkg.remove_module_name;
EXCEPTION
 WHEN OTHERS
 THEN
 error_pkg.set_err_msg ('DAT023');
 error_pkg.raise_error ('Failed Operation');
END;

The instantiation procedure passes the values of the package data (the package
state) to the error package:

PROCEDURE demo_pkg.instantiate_error_context
IS
BEGIN
 error_pkg.add_context (
 'DEMO_PKG', 'Field #1', application.field_1);
 error_pkg.add_context (
 'DEMO_PKG', 'Field #2', application.field_2);
 error_pkg.add_context (
 'DEMO_PKG', 'Field #3', application.field_3);
END;

When you run demo_pkg.proc1, you see the following output:

SQL> exec demo_pkg.proc1
Adding demo_pkg.proc1 to stack
Adding demo_pkg.proc2 to stack
Error Log Time: 13:15:33
Call Stack: demo_pkg.proc1 --> demo_pkg.proc2
Comments: Failed Operation
CFRS Error No: DAT027
Oracle Error: ORA-01403: no data found
----------DEMO_PKG----------------------
Field #1: test string
Field #2: -37
Field #3: NULL

,ch05.14917 Page 80 Friday, June 15, 2001 5:46 PM

Handling Exceptions 81

The error_pkg used in the example and found in the callstack.sql
file requires you to explicitly list the packages that contain
instantiate_error_context procedures. An improved implementation
is to rely on dynamic SQL (either DBMS_SQL or native dynamic
SQL) to automatically construct the program call and execute it.

Benefits

Changes to the way errors are handled or logged don’t require changing any code,
other than the one generic raise procedure

You can validate that packages conform to the standard by querying ALL_ARGU-
MENTS to check for packages that don’t contain the instantiate_error_context
procedure.

Challenges

To be useful, a method like this relies on developers following previously defined
standards.

Resources

callstack.sql : Contains the error package and a demonstration package containing
a dump procedure.

EXC-11: Use WHEN OTHERS only for unknown exceptions
that need to be trapped.

Don’t use WHEN OTHERS to grab any and every error. If you know that a certain
exception might be raised, include a handler for that specifically.

Example

Here’s an exception section that clearly expects a DUP_VAL_ON_INDEX error to
be raised but that buries that information in WHEN OTHERS:

EXCEPTION
 WHEN OTHERS
 THEN
 IF SQLCODE = -1
 THEN
 update_instead (...);
 ELSE
 err.log;
 RAISE;
 END IF;

Here’s a much better approach:

EXCEPTION
 WHEN DUP_VAL_ON_INDEX
 THEN
 update_instead (...);

,ch05.14917 Page 81 Friday, June 15, 2001 5:46 PM

82 Chapter 5: Exception Handling

 WHEN OTHERS
 THEN
 err.log;
 RAISE;

Benefits

Your code more clearly states what you expect to have happen and how you want
to handle your errors. That makes the code easier to maintain and enhance.

You avoid hard-coding error numbers in your checks against SQLCODE.

Declaring Exceptions
In addition to raising and handling exceptions, you also must pay attention to how
and when to declare exceptions and to assign names to error numbers.

EXC-12: Standardize named application exceptions in
package specifications.

It’s likely that a developer will raise a certain error or errors in the process of using
your code, you should declare exceptions in the package specification. Users of
your code can then trap and handle those errors by name.

This approach is used most often for application-specific exceptions, but if your
program might also raise an Oracle exception that has not been given a name in
the STANDARD or other built-in package, you can give it a name and associate it
with that number. See EXC-14 for more details.

Example

Suppose that my overdue.analyze_status procedure might raise one of the
following two errors:

“Overdue more than one month”
I have defined this as a serious error in my database. I must immediately stop
processing and raise an exception.

“Fetch out of sequence”
This is an Oracle error that occurs when something goes wrong in my cursor
FOR loop.

I then add these lines to my overdue package:

CREATE OR REPLACE PACKAGE overdue
IS
 excessive_lateness EXCEPTION;
 PRAGMA EXCEPTION_INIT (
 excessive_lateness, -20700);

 fetch_out_of_sequence EXCEPTION;
 PRAGMA EXCEPTION_INIT (
 fetch_out_of_sequence, -1003);

,ch05.14917 Page 82 Friday, June 15, 2001 5:46 PM

Declaring Exceptions 83

Benefits

Programmers have a better sense of what to expect—and what kind of exception
handlers to write—when using your code.

Resources

sqlerr.pks: Package of predefined exceptions that commonly occur when working
with SQL, and especially dynamic SQL, inside PL/SQL.

EXC-13: Document all package exceptions by module in
package specifications.

Different programs may well raise different exceptions. You need to communicate
this information clearly to users of your code so they know what to expect and
what to code for. PL/SQL doesn’t offer a structured way to do this as part of the
language (Java, for example, does precisely that). So you need to come up with a
standard convention for including such documentation in your code.

Example

The following package specification offers one simple example of how you might
document the exceptions individual programs might raise:

CREATE OR REPLACE PACKAGE overdue
IS
 PROCEDURE analyze_status (...);
 /* analyze_status can raise:
 overdue.excessive_lateness
 overdue.fetch_out_of_sequence
 */

 FUNCTION count_by_borrower (...)
 RETURN INTEGER;
 /* count_by_borrower can raise:
 NO_DATA_FOUND
 borrower.does_not_exist
 */

Benefits

Programmers have a better sense of what to expect—and what kind of exception
handlers to write—when using your code.

Challenges

It can be hard to take the necessary time to do this. Define it as part of your stan-
dard documentation for packages; then use code walkthroughs to identify
omissions.

,ch05.14917 Page 83 Friday, June 15, 2001 5:46 PM

84 Chapter 5: Exception Handling

EXC-14: Use the EXCEPTION_INIT pragma to name system
exceptions that might be raised by your program.

There are hundreds upon hundreds of Oracle error codes and messages. Only a
small handful are actually assigned a name for use in the PL/SQL language. This
assignment occurs in the STANDARD package; here, for example, is the code
defining the first three named exceptions in that package:

CURSOR_ALREADY_OPEN exception;
 pragma EXCEPTION_INIT(CURSOR_ALREADY_OPEN, '-6511');

DUP_VAL_ON_INDEX exception;
 pragma EXCEPTION_INIT(DUP_VAL_ON_INDEX, '-0001');

TIMEOUT_ON_RESOURCE exception;
 pragma EXCEPTION_INIT(TIMEOUT_ON_RESOURCE, '-0051');

And since STANDARD is the default package, you can then write code in your
own programs like:

EXCEPTION
 WHEN CURSOR_ALREADY_OPEN THEN ...

You can also give names to system exceptions, and you should do so when your
program might raise one of those exceptions.

Example

When I built PLVdyn, a PL/Vision package that makes it easier to execute dynamic
SQL, I gave names to a number of errors that commonly occur when constructing
and executing SQL strings with DBMS_SQL. I realized that no matter how good my
code was, a user might pass a dynamic string that, for example, referenced an
undefined table or column. Without a named exception, you ended up writing
code like this:

BEGIN
 cur := PLVdyn.open_and_parse ('SELECT ... ');
 ...
EXCEPTION
 WHEN OTHERS
 THEN
 IF SQLCODE = -904 THEN -- invalid column name
 ...
 ELSIF SQLCODE = -942 THEN – no such table

and so on. So I added a sequence of EXCEPTION_INIT pragmas, some of which
are shown here:

CREATE OR REPLACE PACKAGE PLVdyn
IS
 /* Exceptions */
 no_such_table EXCEPTION;
 PRAGMA EXCEPTION_INIT (no_such_table, -942);
 invalid_table_name EXCEPTION;
 PRAGMA EXCEPTION_INIT (invalid_table_name, -903);
 invalid_column_name EXCEPTION;
 PRAGMA EXCEPTION_INIT (invalid_column_name, -904);

,ch05.14917 Page 84 Friday, June 15, 2001 5:46 PM

Declaring Exceptions 85

Now PL/Vision developers can write code like this:

BEGIN
 cur := PLVdyn.open_and_parse ('SELECT ... ');
 ...
EXCEPTION
 WHEN PLVdyn.invalid_column_name THEN
 ...
 WHEN PLVdyn.no_such_table THEN

 Benefits

You can trap exceptions by name instead of using conditional logic inside the
WHEN OTHERS clause. The result is code that is much easier to read and also to
maintain, since the logic for handling each exception is clearly segregated into
different handlers.

Challenges

None. In fact, you can always add these EXCEPTION_INIT pragmas after the fact
(after, that is, you have written your package) and then retrofit existing exception
sections to use the newly named exceptions.

Resources

sqlerr.pks : Package of predefined exceptions that commonly occur when working
with SQL, and especially dynamic SQL, inside PL/SQL.

,ch05.14917 Page 85 Friday, June 15, 2001 5:46 PM

86

Chapter6

6
Writing SQL
in PL/SQL 6.

One of the reasons developers like PL/SQL so much is that it’s so easy to
write SQL inside a PL/SQL block of code.

One of the most dangerous aspects of PL/SQL is that it’s so easy to write
SQL inside a PL/SQL block of code.

Paradox? Irony? SQL is, in fact, a sort of Achilles heel of PL/SQL develop-
ment. Now, given that PL/SQL was first conceived as a procedural
language extension to SQL, such a statement should raise eyebrows even
further. The simple fact of the matter, however, is that if you aren’t careful
about how you place SQL statements in your PL/SQL code, you will end
up with applications that are difficult to optimize, debug, and manage
over time.

You should follow several simple (to state) guidelines when working with
SQL inside PL/SQL. I collect all of these together in the following meta-
best practice of this chapter.

SQL-00: Establish and follow clear rules for how to write SQL
in your application.
• Never repeat a SQL statement.

• Encapsulate all SQL statements behind a procedural interface (usually a
package).

• Write your code assuming that the underlying data structures will change.

• Take advantage of PL/SQL-specific enhancements for SQL.

All these topics—with examples, benefits, and challenges—are explored in the
more detailed best practices in this chapter.

,ch06.15052 Page 86 Friday, June 15, 2001 5:46 PM

General SQL and Transaction Management 87

General SQL and Transaction
Management
This section contains some general-purpose best practices for writing SQL state-
ments and some specific best practices for handling transactions.

SQL-01: Qualify PL/SQL variables with their scope names
when referenced inside SQL statements.

You could declare a variable that has the same name as a table, a column, or a
view. The PL/SQL compiler won’t get confused, but you might, and your SQL
statements inside PL/SQL might not work as intended. So you should always make
sure that there is no ambiguity between SQL and PL/SQL identifiers. The best way
to do this is to qualify all references to PL/SQL variables with their scope name.

Example

Consider the following block:

CREATE OR REPLACE PROCEDURE show_fav_flavor (
 pref_type IN VARCHAR2)
IS
 pref VARCHAR2(100);
BEGIN
 SELECT preference INTO pref
 FROM personal_preferences PP
 WHERE PP.pref_type = pref_type;
 pl (pref);
END;

You might think that the WHERE clause restricts the query to only those rows
where pref_type equals the value passed in through the parameter. In fact, it’s no
different logically than “1 = 1”. SQL always takes precedence over PL/SQL when
resolving identifiers.

There are two solutions to this problem:

• Use prefixes/suffixes on variable and parameter names to distinguish them
from column and table names, as in:

CREATE OR REPLACE PROCEDURE show_fav_flavor (
pref_type_in IN VARCHAR2)

• Always qualify references to PL/SQL elements inside the SQL statement, as in:

SELECT preference INTO pref
 FROM personal_preferences PP
 WHERE PP.pref_type = show_fav_flavor.pref_type;

I recommend the second approach. It requires more typing, but it’s foolproof.
With the first solution, for example, a DBA can conceivably add a column to the
personal_preferences table called pref_type_in and completely muck up my code!

,ch06.15052 Page 87 Friday, June 15, 2001 5:46 PM

88 Chapter 6: Writing SQL in PL/SQL

Benefits

The behavior of your SQL statements will be predictable and consistent over time,
regardless of changes to the underlying data structures.

Challenges

You have to write more code, qualifying all references to those variables inside
SQL.

For SQL inside anonymous blocks, you need to create a label for the block in the
form <<blockname>> so you have a name to use inside the SQL statement.

SQL-02: Use incremental COMMITs to avoid rollback segment
errors when changing large numbers of rows.

It’s very easy to issue an UPDATE statement that can (theoretically) change one
million rows or 10 million rows. It’s more of a challenge to get that statement to
succeed without running out of rollback segment space. And these errors are often
hard to predict, because they depend on the volume of data for a specific run.

If you have this problem, you should switch to incremental commits: issue a
COMMIT statement every 1,000 or 10,000 rows—whatever level works for your
rollback segments.

Example

You can declare a counter variable and update the variable with each execution of
the loop body. If you process data from within a cursor FOR loop, you can also
take advantage of the built-in %ROWCOUNT attribute, as shown here:

DECLARE
 c_commit_plateau CONSTANT PLS_INTEGER := 10000;

 CURSOR my_cur
 IS
 SELECT *
 FROM my_table;
BEGIN
 FOR my_rec IN my_cur
 LOOP
 INSERT INTO temp_data VALUES (my_rec.id);

 IF (MOD (my_cur%rowcount, c_commit_plateau) = 0)
 THEN
 COMMIT WORK;
 END IF;
 END LOOP;

 COMMIT WORK;
END;

You can also build an API to the PL/SQL COMMIT statement that automatically
handles incremental commits and adds value (logging, on-off toggles) to COMMIT.
You can find an example of such a package in the PL/Vision library.

,ch06.15052 Page 88 Friday, June 15, 2001 5:46 PM

General SQL and Transaction Management 89

Benefits

Make your code more robust by avoiding hard-to-predict rollback segment errors
in your programs.

When you use %ROWCOUNT, there’s no need to declare a local variable to keep
count of how many records have been processed.

Challenges

You need to identify potential problem areas in your code (far better than waiting
until a program fails).

Calling the MOD function through every iteration of the loop is likely to be slower
than checking the value of a counter.

Resources

plvcmt.sps and plvcmt.spb : In the PL/Vision Lite version of the PLVcmt package.

SQL-03: Use autonomous transactions to isolate the effect of
COMMITs and ROLLBACKs (Oracle8i).

A new feature in Oracle8i called autonomous transactions allows you to make
and save (or roll back) changes within a single PL/SQL block—without affecting
the outer or main transaction.

To make a PL/SQL block an autonomous transaction, simply include this state-
ment in the declaration section of the block:

PRAGMA AUTONOMOUS_TRANSACTION;

You can use this statement in any procedure and function and in any non-nested
anonymous block.

Example

CREATE OR REPLACE PROCEDURE log_error (
 code IN INTEGER, msg IN VARCHAR2)
AS
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO error_log
 (errcode, errtext, created_on, created_by)
 VALUES
 (code, msg, SYSDATE, USER);

 COMMIT;
EXCEPTION
 WHEN OTHERS THEN ROLLBACK;
END;

Benefits

With autonomous transactions, you can write and save messages in an database
log without affecting the main transaction.

You can execute from SQL PL/SQL functions that change the database.

,ch06.15052 Page 89 Friday, June 15, 2001 5:46 PM

90 Chapter 6: Writing SQL in PL/SQL

You can write PL/SQL components or cartridges that behave nicely in a distrib-
uted computing environment.

Resources

log.pkg and log.tst: A simple logging package that uses autonomous transactions,
and a companion script you can use to test the functionality.

Querying Data from PL/SQL
The best practices in this section apply when you are querying data from PL/SQL
programs.

SQL-04: Put single-row fetches inside functions; never hard-
code a query in your block.

Always put your single-row query inside a function, and then call the function to
return the information you need (whether it’s a scalar value, an entire record, or
even a collection) through the RETURN clause.

Example

Instead of writing code like this:

BEGIN
 SELECT title INTO l_title -- HARD-CODED
 FROM book -- QUERY...
 WHERE isbn =isbn_in; -- BAD IDEA!

you should create a function, ideally within a “table encapsulation package”:

PACKAGE te_book
IS
 FUNCTION title (isbn_in IN book.isbn%TYPE)
 RETURN book.title%TYPE;

Now your application code looks like this:

BEGIN
 l_title := te_book.title (isbn_in);

Benefits

Optimal performance: The query is written once, presumably by the developer
who best knows how to write it. Since there is a single physical representation of
the query in code, the parsed version of the cursor is cached and used repeatedly.

Easy maintenance: If you need to change the query, you only have to do it in one
place.

Consistent error handling: Individual developers don’t have to remember to write
handlers for NO_DATA_FOUND and TOO_MANY_ROWS.

,ch06.15052 Page 90 Friday, June 15, 2001 5:46 PM

Querying Data from PL/SQL 91

Challenges

Discipline is required in a multi-person team environment to ensure that the team
has at least one person overseeing this type of encapsulation and that the whole
team adheres to this standard.

There will be a larger volume of code to write and manage (your DBA must size
the System Global Area accordingly). Explore the possibilities of generating these
functions from the data dictionary.

SQL-05: Hide reliance on the dual table.

This is a special case of SQL-04 but is worth mentioning. The dual table is a
“dummy” table that is used by Oracle itself and by many developers to access
functionality in the SQL engine that is otherwise not available in PL/SQL.

Use of the dual table is, therefore (and by definition) a workaround or “kludge.”
We all know we have to do these things, but we also know or hope that over
time, we will no longer have to do them. So hide your kludges behind a function
or procedure and then, when they are no longer needed, you can change the
implementation without affecting those usages.

Example

Instead of:

DECLARE
 my_id INTEGER;
BEGIN
 SELECT patient_seq.NEXTVAL INTO my_id
 FROM dual;

you should build yourself a function:

CREATE OR REPLACE FUNCTION next_patient_id
 RETURN patient.patient_id%TYPE
IS
 retval patient.patient_id%TYPE;
BEGIN
 SELECT patient_seq.nextval
 INTO retval
 FROM dual;
 RETURN retval;
END;

And then you only need to write this to get your next primary key value:

DECLARE
 my_id INTEGER;
BEGIN
 my_id := next_patient_id;

Benefits

You gain the ability to remove workarounds and kludges from code more easily as
underlying software improves.

,ch06.15052 Page 91 Friday, June 15, 2001 5:46 PM

92 Chapter 6: Writing SQL in PL/SQL

Resources

nextseq.sf : A function that uses dynamic SQL to offer a single function that
retrieves the nth NEXTVAL from any sequence you specify.

SQL-06: Define multi-row cursors in packages so they can be
used from multiple programs.

Create a package to hold all the multiple-row queries for a given business entity
(which may be made up of one or more tables and views). You can then open,
fetch, and close those cursors from multiple programs.

Here’s an example of such a package:

PACKAGE book_pkg
IS
 CURSOR allbooks IS
 SELECT * FROM book;

 CURSOR books_by_category (
 category_in IN book.category%TYPE)
 IS
 SELECT * FROM book
 WHERE category = category_in;

and here is a use of a packaged cursor:

BEGIN
 OPEN book_pkg.books_by_category (
 'THRILLER');
 LOOP
 FETCH book_pkg.books_by_category
 INTO thrillers_rec;
 ...
 END LOOP;
 CLOSE book_pkg.books_by_category;
END;

Benefits

Individual developers don’t have to learn all the ins and outs of potentially
complex, multijoin queries.

When changes to queries are required, you only have to go to one place in your
code to make the fix.

Challenges

Packaged cursors are persistent; they stay open until you explicitly close them or
until you disconnect (unless you use the SERIALLY_REUSABLE pragma). This is
different from locally declared cursors, which close automatically when the current
block ends.

Team processes must be defined. Developers need to know where to go to find
the code, whom to go to when it needs changing, and so on.

,ch06.15052 Page 92 Friday, June 15, 2001 5:46 PM

Querying Data from PL/SQL 93

SQL-07: Fetch into cursor records, never into a hard-coded
list of variables.

Whenever you fetch data from a cursor, whether it’s an explicit cursor or a cursor
variable, you should fetch into a record defined from that cursor with
%ROWTYPE.

Example

Suppose I have declared a cursor in a package as follows:

PACKAGE book_pkg
IS
 CURSOR books_by_category (
 category_in IN book.category%TYPE)
 IS
 SELECT title, author FROM book
 WHERE category = category_in;
END book_pkg;

Now I want to fetch information from this cursor. If I fetch into individual vari-
ables like this:

DECLARE
 l_title book.title%TYPE;
 l_author book.author%TYPE;
BEGIN
 OPEN book_pkg.books_by_category ('SCIFI');
 FETCH book_pkg.books_by_category INTO
 l_title, l_author;

then I am hard-coding the number of values returned by a cursor, as well as the
datatypes of the individual variables. (I could use %TYPE, but I am more likely to
be lazy.)

This is a dangerous assumption to make. What if the owner of the book_pkg
package decides to add another column to the SELECT list? My code will then fail
to compile.

If, on the other hand, I write my code like this:

DECLARE
 scifi_rec book_pkg.books_by_category%ROWTYPE;
BEGIN
 OPEN book_pkg.books_by_category ('SCIFI');
 FETCH book_pkg.books_by_category INTO
 scifi_rec;

then, if the cursor ever changes, my code will/can be recompiled, and it will auto-
matically adapt to the new cursor structure.

Benefits

Code adapts automatically to changes in the underlying cursor structure.

You write less code, since you don’t have to declare individual variables.

,ch06.15052 Page 93 Friday, June 15, 2001 5:46 PM

94 Chapter 6: Writing SQL in PL/SQL

SQL-08: Use COUNT only when the actual number of
occurrences is needed.

Don’t use the COUNT function to answer either of the following questions:

• Is there at least one row matching certain criteria?

• Is there more than one row matching certain criteria?

Instead, use an explicit cursor inside a function.

You should use COUNT only when you need to answer the question: “How many
rows match a certain criteria?”

Example

Suppose I have been asked to write a program that returns TRUE if there is at least
one book in a given category. I could write it like this:

CREATE OR REPLACE FUNCTION atleastone (
 category_in IN book.category%TYPE)
 RETURN BOOLEAN
IS
 numbooks INTEGER;
BEGIN
 SELECT COUNT(*) INTO numbooks
 FROM book
 WHERE category = category_in;
 RETURN (numbooks > 0);
END;

But I am asking the RDBMS to do lots of unnecessary work. It might find, for
instance, that there are 12 million books in the NON-FICTION category. A better
approach is:

CREATE OR REPLACE FUNCTION atleastone (
 category_in IN book.category%TYPE)
 RETURN BOOLEAN
IS
 retval BOOLEAN;

 CURSOR category_cur
 SELECT 1
 FROM book
 WHERE category = category_in;
BEGIN
 OPEN category_cur;
 FETCH category_cur INTO category_rec;
 retval := category_cur%FOUND;
 CLOSE category_cur;
 RETURN retval;
END;

In other words: all I have to do is see if there is a single row, and I am done.

Benefits

With this practice, you get optimal performance out of your query.

,ch06.15052 Page 94 Friday, June 15, 2001 5:46 PM

Querying Data from PL/SQL 95

The readability of your code also improves, since it’s a more accurate translation
of the requirement.

Challenges

You will write a bit more code, especially if you take the time to put your query
inside a function, as recommended in SQL-04.

Resources

atleastone.sql : A SQL*Plus script comparing different approaches to answering the
question “Is there at least one employee in department 20?”

SQL-09: Use a cursor FOR loop to fetch all rows in a cursor
unconditionally.

The cursor FOR loop construct is a wonderful addition to the PL/SQL language,
reflecting the tight integration between SQL and PL/SQL. Use it whenever you
need to fetch every single row identified by the cursor, but don’t use it if you have
to conditionally exit from the loop.

Example

I need to display the total number of books sold for each of my PL/SQL texts.
That’s easy:

DECLARE
 CURSOR sef_books_cur IS
 SELECT title, total_count
 FROM book_sales
 WHERE author = 'FEUERSTEIN, STEVEN';
BEGIN
 FOR rec IN sef_books_cur
 LOOP
 pl (rec.title || ': ' ||
 rec.total_count || ' copies');
 END LOOP;
END;

Perfect use of a cursor FOR loop! Suppose, on the other hand, the requirement
was this: “Display all the books and their numbers sold until the total reaches
100,000; then quit.” In this case, I should use a WHILE loop with an EXIT WHEN
statement. Here’s an example:

DECLARE
 total_sold PLS_INTEGER := 0;

 CURSOR sef_books_cur IS
 SELECT title, total_count
 FROM book_sales
 WHERE author = 'FEUERSTEIN, STEVEN';

 rec sef_books_cur%ROWTYPE;
stop_loop BOOLEAN;
BEGIN
 OPEN sef_books_cur;

,ch06.15052 Page 95 Friday, June 15, 2001 5:46 PM

96 Chapter 6: Writing SQL in PL/SQL

 LOOP
 FETCH sef_books_cur INTO rec;
 stop_loop := sef_books_cur%NOTFOUND;
 IF NOT stop_loop
 THEN
 pl (rec.title || ’: ’ ||
 rec.total_count || ’ copies’);
 total_sold := total_sold + rec.total_count;
 stop_loop := total_sold >= 100000;
 END IF;
 EXIT WHEN stop_loop;
 END LOOP;
 CLOSE sef_books_cur;
END;

Benefits

The cursor FOR loop saves you coding effort and does more work for you—that
is, it opens, fetches from, and closes the cursor.

The resulting code is very readable; use of the FOR loop says that you are fetching
all rows from the cursor.

Challenges

After the END LOOP statement, you can’t tell anything about what happened
inside the loop, such as: “Was anything actually retrieved?” or “How many rows
were retrieved?” You have to add your own counters and variables inside the body
of the loop to figure that out.

If a developer isn’t careful, the body of code inside the cursor FOR loop can
become very large. Since the FOR loop record isn’t referenceable outside the loop,
it may be hard to apply step-wise refinement with local modules to make the code
more manageable. See MOD-03 for more information about this technique.

SQL-10: Never use a cursor FOR loop to fetch just one row.

If you have a single-row query, you can use a cursor FOR loop, but it’s
misleading. A cursor FOR loop is designed to fetch all (multiple) rows from a
cursor. The only rationale for using a cursor FOR loop for a single-row query is
that you don’t have to write as much code, and that is both dubious and a lame
excuse.

Example

Doesn’t this look silly:

CREATE OR REPLACE FUNCTION book_title (
 isbn_in IN book.isbn%TYPE)
RETURN book.title%TYPE
IS
 CURSOR title_cur IS
 SELECT title INTO l_title
 FROM book
 WHERE isbn =isbn_in;

,ch06.15052 Page 96 Friday, June 15, 2001 5:46 PM

Querying Data from PL/SQL 97

 l_rec title_cur%ROWTYPE;
BEGIN
 FOR rec IN title_cur
 LOOP
 l_rec := rec;
 END LOOP;
 RETURN l_rec.title;
END;

Instead, use a SELECT INTO or explicit cursor; for example:

CREATE OR REPLACE FUNCTION book_title (
 isbn_in IN book.isbn%TYPE)
RETURN book.title%TYPE
IS
 CURSOR title_cur IS
 SELECT title INTO l_title
 FROM book
 WHERE isbn =isbn_in;

 l_rec title_cur%ROWTYPE;
BEGIN
 OPEN title_cur;
 FETCH title_cur INTO l_rec;
 CLOSE title_cur;
 RETURN l_rec.title;
END;

Benefits

Your code doesn’t look silly. It satisfies the requirement in the most direct and
understandable way.

A cursor FOR loop is less efficient than either a SELECT INTO or an explicit cursor
fetch.

Resources

explimpl.pkg and explimpl.sql : Scripts that compare the performance of cursor FOR
loops to other fetching methods for a single row.

SQL-11: Specify columns to be updated in a SELECT FOR
UPDATE statement.

Use the SELECT FOR UPDATE statement to request that locks be placed on all
rows identified by the query. This is done when you know you will change some
or all of those rows, and you don’t want another session to change them out from
under you.

Specify the columns to be updated so that (a) anyone reading the code knows the
intentions of your program, and (b) if your query contains a join of more than one
table, Oracle will lock only the rows in those tables that contain any of the speci-
fied columns.

,ch06.15052 Page 97 Friday, June 15, 2001 5:46 PM

98 Chapter 6: Writing SQL in PL/SQL

Example

The following code sets the favorite ice cream flavor of the Feuerstein family to
ROCKY ROAD, but doesn’t lock any rows in the person table:

DECLARE
 CURSOR change_prefs_cur IS
 SELECT PER.name, PREF.name flavor
 FROM person PER, preference PREF
 WHERE PER.name = PREF.person_name
 AND PREF.type = 'ICE CREAM'
 FOR UPDATE OF PREF.name;
BEGIN
 FOR rec IN change_prefs_cur
 LOOP
 IF rec.name LIKE 'FEUERSTEIN%'
 THEN
 UPDATE preference SET name = 'ROCKY ROAD'
 WHERE CURRENT OF change_prefs_cur;
 END IF;
 END LOOP;
END;
/

Benefits

You keep to a minimum the number of locks placed on rows in tables.

You self-document the behavior of your code, which is important for those who
come to your code later in its life to maintain it.

Resources

forupdate.sql : Contains the code for the example in this section.

SQL-12: Parameterize explicit cursors.

Cursors return information, just as functions do, and they can accept parameters
just as functions do (but only IN parameters). By defining your explicit cursors to
accept parameterized values, these cursors are more easily reused in different
circumstances and programs. This added value becomes most apparent when you
define cursors in package specifications.

Example

Instead of this:

DECLARE
 CURSOR r_and_d_cur IS
 SELECT last_name FROM employee
 WHERE department_id = 10;
BEGIN
 OPEN r_and_d_cur;

,ch06.15052 Page 98 Friday, June 15, 2001 5:46 PM

Querying Data from PL/SQL 99

move your cursor to a package:

CREATE OR REPLACE PACKAGE dept_info_pkg
IS
 CURSOR name_cur (dept IN INTEGER) IS
 SELECT last_name FROM employee
 WHERE department_id = dept;

and then open it like this:

BEGIN
 open dept_info_pkg.name_cur (10);

or, even better, do this to avoid the hard-coded literal:

DECLARE
 r_and_d_dept CONSTANT PLS_INTEGER := 10;
BEGIN
 open dept_info_pkg.name_cur (r_and_d_dept);

Benefits

Application improvement is likely to improve, because parameters in a cursor are
treated as bind variables. So, no matter what value is passed to the cursor, the SQL
statement stays the same and isn’t parsed repeatedly.

You will achieve higher levels of reuse in your application, reducing maintenance
requirements.

SQL-13: Use RETURNING to retrieve information about
modified rows (Oracle8).

The RETURNING clause, available in Oracle8 and above, allows you to retrieve
information from rows you have just modified with an INSERT, UPDATE, or
DELETE statement. This clause allows you to perform—in a single operation—
what you would previously have done in two operations (INSERT, then SELECT,
for example).

Example

Suppose that I am using a sequence to generate the primary key of the patient
table in my universal health care system. I then need to use that new primary key
for another operation. Prior to Oracle8, I would have written code like this:

INSERT INTO patient (patient_id, last_name, first_name)
 VALUES (patient_seq.NEXTVAL, 'FEUERSTEIN', 'STEVEN');

SELECT patient_id INTO l_patient_id
 FROM patient
 WHERE last_name = 'FEUERSTEIN';

or even like this:

SELECT patient_seq.NEXTVAL INTO l_patient_id
 FROM dual;

INSERT INTO patient (patient_id, last_name, first_name)
 VALUES (l_patient_id, 'FEUERSTEIN', 'STEVEN');

,ch06.15052 Page 99 Friday, June 15, 2001 5:46 PM

100 Chapter 6: Writing SQL in PL/SQL

With RETURNING, I can collapse two statements into a single INSERT statement:

INSERT INTO patient (patient_id, last_name, first_name)
 VALUES (patient_seq.NEXTVAL, 'FEUERSTEIN', 'STEVEN')
 RETURNING patient_id INTO l_patient_id;

You can also use the RETURNING clause in dynamic SQL and FORALL statements
to obtain information about multiple rows affected by DML statements.

Benefits

You will see improved performance in your applications.

Code volume will be reduced.

Challenges

Your code will not run in versions of Oracle prior to Oracle8.

Resources

returning.tst : A script comparing the performance of INSERT-SELECT to INSERT-
RETURNING.

SQL-14: Use BULK COLLECT to improve performance of
multi-row queries (Oracle8i).

Recognizing that you often need to return large numbers of rows from the data-
base, Oracle8i offers a new BULK COLLECT clause for queries. When you use
BULK COLLECT, you retrieve multiple rows of data in a single request to the
RDBMS. The data is then deposited into a series of collections.

Example

To use BULK COLLECT, you need to declare collections to hold all the retrieved
data. Then, preface your INTO clause with the BULK COLLECT keywords, and you
are done:

CREATE OR REPLACE PROCEDURE process_employees
 (deptno_in IN dept.deptno%TYPE)
RETURN emplist_t
IS
 TYPE numTab IS TABLE OF emp.empno%TYPE;
 TYPE charTab IS TABLE OF emp.ename%TYPE;
 TYPE dateTab IS TABLE OF emp.hiredate%TYPE;
 enos numTab;
 names charTab;
 hdates dateTab;
BEGIN
 SELECT empno, ename, hiredate
 BULK COLLECT INTO enos, names, hdates
 FROM emp
 WHERE deptno = deptno_in;
 ...
END process_employees;

,ch06.15052 Page 100 Friday, June 15, 2001 5:46 PM

Changing Data from PL/SQL 101

Or, if you are using an explicit cursor:

BEGIN
 OPEN emp_cur INTO emp_rec;
 FETCH emp_cur BULK COLLECT INTO enos, names, hdates;

Benefits

You will see an improvement (in some cases, a dramatic improvement) in query
performance.

Challenges

You must declare a separate collection for each element in the SELECT list.

You must be careful when the SELECT returns many thousands of rows. There
could be many users running the same program in a session, which can lead to
memory problems. Try to restrict the bulk collection by using ROWNUM, for
instance.

Changing Data from PL/SQL
With PL/SQL, you can not only query information from an underlying Oracle data-
base but also change data in tables with the INSERT, UPDATE, and DELETE
operations.

SQL-15: Encapsulate INSERT, UPDATE, and DELETE
statements behind procedure calls.

Write a standalone procedure or put such procedures inside a single “table encap-
sulation package,” but never, ever embed DML statements directly within
application code.

Example

Instead of writing an INSERT as follows:

INSERT INTO book (
 isbn, title, author)
VALUES (

Know Thy SQL
Take the “Know Thy SQL” test: pick a table, any critical table in your appli-
cation schema. Ask yourself this question: “Do I know where all or any of
the INSERT statements for this table appear in my code?” Chances are that
you can’t answer definitively, and that is because we PL/SQL developers are
somewhat haphazard about managing our SQL statements. The result?
Tremendous obstacles to performing accurate impact analysis on your code
from database changes, among other things.

,ch06.15052 Page 101 Friday, June 15, 2001 5:46 PM

102 Chapter 6: Writing SQL in PL/SQL

 '1-56592-675-7',
 'Oracle PL/SQL Programming Guide to Oracle8i Features',
 'Feuerstein, Steven');

use a standalone procedure, as in:

add_book (
 '1-56592-675-7',
 'Oracle PL/SQL Programming Guide to Oracle8i Features',
 'Feuerstein, Steven');

or a packaged procedure:

te_book.ins (
 '1-56592-675-7',
 'Oracle PL/SQL Programming Guide to Oracle8i Features',
 'Feuerstein, Steven');

Benefits

Your application runs faster. All programs that perform inserts into a given table
use exactly the same INSERT, which results in less parsing and reduced demands
on SGA memory.

Your application handles DML-related errors consistently. It’s not up to individual
developers to write error-logging mechanisms or decide how to deal with partic-
ular errors.

Challenges

You need to write or generate more procedural code.

Your DBA may need to adjust the size of the shared pool area to handle the
increased volume of code.

You may need to create multiple update procedures, to match up with various
combinations of columns that you update in your application.

Resources

te_employee.pks and te_employee.pkb : Examples of the specification and body of a
table encapsulation package.

SQL-16: Reference cursor attributes immediately after
executing the SQL operation.

INSERT, UPDATE, and DELETE statements are all executed as “implicit cursors” in
PL/SQL. You don’t, in other words, explicitly declare, open, and process these
kinds of statements. You simply issue the INSERT, UPDATE, or DELETE state-
ment, and the underlying Oracle SQL engine takes care of the cursor management.

,ch06.15052 Page 102 Friday, June 15, 2001 5:46 PM

Changing Data from PL/SQL 103

You can obtain information about the results of the implicit operation most
recently executed in your session by checking any of the following cursor
attributes:

There is only one set of SQL% attributes in a session; they always reflect the last
implicit operation performed. You should, therefore, keep to an absolute
minimum the code that falls between the DML operation and the attribute refer-
ence. Otherwise, the value returned by the attribute might not correspond to the
desired SQL statement, resulting in hard-to-resolve bugs.

Example

I have the good fortune to have published eight books with O’Reilly & Associ-
ates on the subject of PL/SQL. Let’s suppose that all my titles contain the word
“PL/SQL” (and that all O’Reilly books with PL/SQL in the title were written or co-
written by yours truly). We have decided to change the font size in the books to
cut the page count in half and now need to update the database:

DECLARE
 PROCEDURE show_max_count
 IS
 l_total_pages PLS_INTEGER;
 BEGIN
 SELECT MAX (page_count)
 INTO l_total_pages
 FROM book
 WHERE title LIKE '%PL/SQL%';
 DBMS_OUTPUT.PUT_LINE (l_total_pages);
 END;
BEGIN
 UPDATE book SET page_count = page_count / 2
 WHERE title LIKE '%PL/SQL%';

 show_max_count;

 DBMS_OUTPUT.PUT_LINE (
 'Pages adjusted in ' || SQL%ROWCOUNT || ' books.');
END;

My intention in this program is to display the number of books that have been
updated. Between my UPDATE and my reference to SQL%ROWCOUNT, I call a
procedure (show_max_count) that executes an implicit SELECT MAX. The refer-
ence to SQL%ROWCOUNT will, therefore, reflect the outcome of the SELECT
rather than the UPDATE.

Attribute Returns

SQL%ROWCOUNT Number of rows affected by the DML statement

SQL%ISOPEN Always FALSE, since the cursor is opened and then closed
implicitly

SQL%FOUND Returns TRUE if the statement affects at least one row

SQL%NOTFOUND Returns FALSE if the statement affects at least one row

,ch06.15052 Page 103 Friday, June 15, 2001 5:46 PM

104 Chapter 6: Writing SQL in PL/SQL

SQL-17: Check SQL%ROWCOUNT when updating or
removing data that “should” be there.

The SQL%ROWCOUNT cursor attribute returns the numbers of rows affected by
the most recent INSERT, UPDATE, or DELETE statement executed in your session.
Check this value to verify that the action completed properly. (Note that updates
and deletes don’t raise an exception if no rows are affected.)

Example

Let’s suppose that the local library spelled my name incorrectly when they entered
my books into their system. Now they need to fix it and they want to make sure
they got them all (eight, including this text):

BEGIN
 UPDATE book
 SET author = 'FEUERSTEIN, STEVEN'
 WHERE author = 'FEVERSTEIN, STEPHEN';

 IF SQL%ROWCOUNT < 8
 THEN
 ROLLBACK;
 Pl (
 'Find the rest of his books, rapido!');
 END IF;
END;

Benefits

Your programs will check for and be able to handle problems more effectively.

SQL-18: Use FORALL to improve performance of collection-
based DML (Oracle8i).

Recognizing that you often need to modify (insert, delete, or update) large
numbers of rows in the database from within PL/SQL, Oracle8i offers a new
FORALL statement. This statement can dramatically improve your DML perfor-
mance by reducing the number of “context switches” between the PL/SQL
statement executor and the SQL engine.

Consider using FORALL whenever you perform a DML operation within a loop.

Example

The following cursor FOR loop performs many individual row updates:

BEGIN
 FOR book_rec IN book_pkg.book_cur
 LOOP
 UPDATE borrowings
 SET borrow_date = SYSDATE
 borrower_id = book_rec.user_id
 WHERE isbn = book_rec.isbn;
 END LOOP;
END;

,ch06.15052 Page 104 Friday, June 15, 2001 5:46 PM

Dynamic SQL and Dynamic PL/SQL 105

Now I use FORALL to accomplish the same thing, but with a single pass to the
SQL engine and RDBMS:

DECLARE
 TYPE books_t IS TABLE OF borrower.user_id%TYPE;
 books books_t := books_t();
 TYPE isbns_t IS TABLE OF book.isbn%TYPE;
 isbns isbns _t := isbns_t();
BEGIN
 FOR book_rec IN book_pkg.book_cur
 LOOP
 books.EXTEND;
 isbns.EXTEND;
 books(books.LAST) := book_rec.user_id;
 isbns(isbns.LAST) := book_rec.isbn;
 END LOOP;

 FORALL indx IN books.FIRST .. books.LAST
 UPDATE borrowings
 SET borrow_date = SYSDATE
 borrower_id = books(indx)
 WHERE isbn = isbns(indx);
END;

Notice that I still need the cursor FOR loop to populate my collections. The time it
takes to do this, however, is usually more than offset by the improvements in
UPDATE processing.

Benefits

You can significantly improve the performance of multirow DML operations.

If an error occurs during the DML activity, any statements that have already been
processed aren’t rolled back. This is great if you want to preserve any changes that
“got through.”

Challenges

You may have to convert your programs to populate collections, which are then
passed to the FORALL statement.

If an error occurs during the DML activity, any statements that have already been
processed aren’t rolled back. This is a problem if you wanted “all or nothing” for
your DML.

Resources

bulktiming.sql : A script to compare performance of row-by-row DML and FORALL-
based DML.

Dynamic SQL and Dynamic PL/SQL
“Dynamic” means that the SQL statement or PL/SQL block that you execute is
constructed, parsed, and compiled at runtime, not at the time the code is
compiled. Dynamic SQL offers a tremendous amount of flexibility—but also
complexity.

,ch06.15052 Page 105 Friday, June 15, 2001 5:46 PM

106 Chapter 6: Writing SQL in PL/SQL

With Oracle8i and above, you can use native dynamic SQL (NDS) to take care of
dynamic SQL. Prior to Oracle8i, you must rely on the DBMS_SQL built-in package.

SQL-19: Encapsulate dynamic SQL parsing to improve error
detection and cleanup.

Dynamic SQL is tricky; you generally glue together different chunks of text (with
the concatenation operator) to form what you hope is a valid SQL or PL/SQL state-
ment. Either through programmer error or user error, you can end up with a bad
chunk of SQL, resulting in a parse error.

To identify and fix these errors, you should create your own parsing “engine” on
top of DBMS_SQL.PARSE and the NDS statements. This program traps and displays
error information, and cleans up any cursors.

Example

This technique is most crucial for DBMS_SQL. Don’t ever call DBMS_SQL.PARSE
directly in your program. Instead, call your own parse encapsulator. Why would
you bother to do this? Consider the following block of code. It leaves a DBMS_
SQL cursor unclosed and unclosable; you need to be able to reference the dyncur
variable in the call to DBMS_SQL.CLOSE_CURSOR, but that variable is erased once
the exception is propagated:

DECLARE
 dyncur PLS_INTEGER := DBMS_SQL.open_cursor;
BEGIN
 -- Whoops, forget the FROM clause!
 DBMS_SQL.parse (
 dyncur, 'select * dual', DBMS_SQL.native);
END;

Here’s a very simple example of an encapsulation for DBMS_SQL.PARSE:

CREATE OR REPLACE FUNCTION open_and_parse (
 dynsql_in IN VARCHAR2,
 dbms_mode_in IN INTEGER := NULL)
RETURN INTEGER
IS
 dyncur INTEGER;
BEGIN
 dyncur := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE (dyncur, dynsql_in,
 NVL (dbms_mode_in, DBMS_SQL.NATIVE));

 RETURN dyncur;
EXCEPTION
 WHEN OTHERS
 THEN
 DBMS_SQL.CLOSE_CURSOR (dyncur);
 pl (SQLERRM);
 pl (dynsql_in);
 RETURN NULL;
END;
/

,ch06.15052 Page 106 Friday, June 15, 2001 5:46 PM

Dynamic SQL and Dynamic PL/SQL 107

See the “Resources” section for a more comprehensive solution with DBMS_SQL.

Here’s the native dynamic SQL equivalent:

CREATE OR REPLACE PROCEDURE exec_immed (
 dynsql_in IN VARCHAR2)
 AUTHID CURRENT_USER
IS
BEGIN
 EXECUTE IMMEDIATE dynsql_in;
EXCEPTION
 WHEN OTHERS
 THEN
 pl (SQLERRM)
 pl (dynsql_in);
END;
/

Benefits

You can identify and fix errors in your program, or train your users to use the
interface to your dynamic SQL, more effectively.

You will not inadvertently leave open DBMS_SQL cursors that are unclosable in
your session.

Challenges

With DBMS_SQL (prior to Oracle8i), any SQL statement passed to open_and_parse
is parsed under the privileges of the owner of open_and_parse. You should, there-
fore, install this program in every schema that wants to use it. Or, if you are
running Oracle8i and still using DBMS_SQL, use the AUTHID CURRENT_USER
clause to ensure that the program runs under the invoker’s authority.

With NDS, you can’t separate the parse and execute phases; it’s all done by
EXECUTE IMMEDIATE. That makes it hard to write a truly generic program to
handle any SQL string (you have to account for the USING and INTO clauses).
The general principle still applies, however: trap, handle, and display dynamic
SQL errors !

Resources

openprse.pkg : A package that allocates new DBMS_SQL cursors only when neces-
sary, and displays SQLERRM and the SQL string if a parse error occurs.

SQL-20: Bind, do not concatenate, variable values into
dynamic SQL strings.

When you bind a variable value into a dynamic SQL string, you insert a “place-
holder” into the string. This allows Oracle to parse a “generic” version of that SQL
statement, which can be used over and over again, regardless of the actual value
of the variable, without repeated parsing.

On the other hand, if you concatenate, then every time the value you concatenate
changes, the physical SQL statement changes, causing excessive parsing.

,ch06.15052 Page 107 Friday, June 15, 2001 5:46 PM

108 Chapter 6: Writing SQL in PL/SQL

You can bind only variable values. You can’t bind in the names of
tables or columns, nor can you bind in parts of a SQL statement
structure, such as the entire WHERE clause. In these cases, you
must use concatenation.

Example

Here’s an example of binding with DBMS_SQL. This program updates any numeric
column in the specified table, based on the supplied name:

CREATE OR REPLACE PROCEDURE updnumval (
 tab_in IN VARCHAR2,
 namecol_in IN VARCHAR2,
 numcol_in IN VARCHAR2,
 name_in IN VARCHAR2,
 val_in IN NUMBER)
IS
 cur PLS_INTEGER;
 fdbk PLS_INTEGER;
BEGIN
 cur := open_and_parse (
 'UPDATE ' || tab_in ||
 ' SET ' || numcol_in || ' = :val
 WHERE ' || namecol_in || ' LIKE :name');

 DBMS_SQL.BIND_VARIABLE (cur, 'val', val_in);
 DBMS_SQL.BIND_VARIABLE (cur, 'name', name_in);

 fdbk := DBMS_SQL.EXECUTE (cur);

 DBMS_SQL.CLOSE_CURSOR (cur);
END;
/

Here’s one possible usage of this procedure:

SQL> exec updnumval ('emp', 'ename', 'sal', 'S%', 5000)

Benefits

Your System Global Area requires less memory for the dynamic SQL cursors.

Application performance improves due to reduced parsing.

You will find it easier and less bug-prone to write dynamic SQL code.

Resources

updnval2.pro : Implementation of the updnumval program using concatenation so
that you can compare the complexity of the implementations.

effdsql.tst : A script that allows you to compare performance of repetitive parsing
using concatenation with a single parse that relies on binding instead.

,ch06.15052 Page 108 Friday, June 15, 2001 5:46 PM

Dynamic SQL and Dynamic PL/SQL 109

SQL-21: Soft-code the maximum length of columns in DBMS_
SQL.DEFINE_COLUMN calls.

When you call DBMS_SQL.DEFINE_COLUMN to define a VARCHAR2 column, you
must provide the maximum length of the string that will be passed back to your
program. Ideally, we’d use an attribute like %COLLEN to automatically draw that
value from the data dictionary. There is, unfortunately, no such attribute. As a
consequence, we usually sigh and hard-code a maximum length.

Rather than do that, create a package specification and place all column lengths
you need to reference there. This way, if those lengths change, you can update
just the one package. You can also generate this package specification directly
from the data dictionary (see the “Resources” section).

Example

I create a “column length” package:

CREATE OR REPLACE PACKAGE collen
IS
 city CONSTANT INTEGER := 15;
 state CONSTANT INTEGER := 2;
END collen;

And I now reference those constants whenever I call DBMS_SQL.DEFINE
COLUMN:

DBMS_SQL.DEFINE_COLUMN (
 cursor_handle, 1, city, collen.city);

DBMS_SQL.DEFINE_COLUMN (
 cursor_handle, 2, state, collen.state);

Benefits

You avoid hard-coding column lengths. If a column length changes, you update
the value only in the package of named constants.

Challenges

You have to build and maintain the column length package(s). Code generation
will make the difference here.

Resources

genlenpkg.pro : A program that generates the column length package for the speci-
fied table (VARCHAR2 columns only). Here’s an example of the output from
the genlenpkg procedure:

SQL> exec genlenpkg ('employee')
CREATE OR REPLACE PACKAGE employee$collen AS
 LAST_NAME CONSTANT PLS_INTEGER := 15;
 FIRST_NAME CONSTANT PLS_INTEGER := 15;
 MIDDLE_INITIAL CONSTANT PLS_INTEGER := 1;
 ENAME CONSTANT PLS_INTEGER := 30;

,ch06.15052 Page 109 Friday, June 15, 2001 5:46 PM

110 Chapter 6: Writing SQL in PL/SQL

 CREATED_BY CONSTANT PLS_INTEGER := 100;
 CHANGED_BY CONSTANT PLS_INTEGER := 100;
END PACKAGE employee$collen;

SQL-22: Apply the invoker rights method to all stored code
that executes dynamic SQL (Oracle8i).

Whenever you create a stored program (standalone or within a package) that
parses a dynamic SQL statement, you should define that program with the
“invoker rights” model. This is done by adding the following clause to the
program header:

AUTHID CURRENT_USER

This feature is available only in Oracle8i and above. This clause ensures that the
dynamic SQL string is parsed under the authority of the schema currently running
the program, which is almost always the desired behavior.

Example

If I were to create a reusable program to execute any DDL statement, I would
make certain it used the AUTHID statement as follows:

CREATE OR REPLACE PROCEDURE runddl (
 ddl_in in VARCHAR2)
 AUTHID CURRENT_USER
IS
BEGIN
 EXECUTE IMMEDIATE ddl_in;
EXCEPTION
 WHEN OTHERS
 THEN
 pl (SQLERRM)
 pl (ddl_in);
 RAISE;
END;
/

Benefits

You can build and share generic dynamic SQL utilities more easily. Developers
don’t have to worry about which schema owns the utility and whether or not the
requested operation will affect someone else’s schema.

Challenges

This feature is available only in Oracle8i.

Resources

runddl.pro and runddl81.pro : Generic DDL engine in both DBMS_SQL and NDS.

,ch06.15052 Page 110 Friday, June 15, 2001 5:46 PM

Dynamic SQL and Dynamic PL/SQL 111

SQL-23: Format dynamic SQL strings so they can be easily
read and maintained.

When building long and possibly complex dynamic SQL statements, you should
apply the same formatting rules as are applied to static code.

These strings are often the result of multiple concatenations, so they start off being
less readable than static code. Don’t compound the problem by treating this
dynamic SQL as simply a set of concatenated strings. Consider it, instead, as a
“program” in and of itself and format it—as much as possible—in the same way.

Many experienced dynamic SQL developers build a “typical” query or block
(expressing the pattern of code they want to run dynamically), and then turn it
into a string, with all the linebreaks and indentation intact.

Example

Here’s an example of well-formatted PL/SQL code: my very long string is broken
into individual pieces so that it can be indented nicely. This formatting also, unfor-
tunately, pleads ignorant to recognizing the significance of that string’s contents:

DECLARE
 v_sql VARCHAR2 (32767);
BEGIN
 v_sql :=
 'DECLARE CURSOR curs_get_orders IS ' ||
 ' SELECT * FROM ord_order; BEGIN ' ||
 ' FOR v_order_rec IN curs_get_orders LOOP ' ||
 ' process_order(v_order_rec.order_id); ' ||
 ' END LOOP; END;';
 EXECUTE IMMEDIATE v_sql;
END;
/

Here are two alternative formattings of the same assignment. In the first, I continue
to use concatenation, but I break up the string and use indentation to present the
block of code according to my usual conventions. In the second example, I write
my block as a single string with embedded carriage returns displayed, to make
sure it compiles correctly:

v_sql :=
 'DECLARE '
|| 'CURSOR curs_get_orders IS '
|| 'SELECT * FROM ord_order; '
|| 'BEGIN '
|| 'FOR v_order_rec IN curs_get_orders LOOP '
|| 'process_order(v_order_rec.order_id); '
|| 'END LOOP; '
|| 'END;';

v_sql :=
 'DECLARE
 CURSOR curs_get_orders IS
 SELECT *
 FROM ord_order;
 BEGIN

,ch06.15052 Page 111 Friday, June 15, 2001 5:46 PM

112 Chapter 6: Writing SQL in PL/SQL

 FOR v_order_rec IN curs_get_orders LOOP
 process_order(v_order_rec.order_id);
 END LOOP;
 END';

Benefits

You can read and maintain the code much more easily.

Challenges

It’s extremely important to agree upon a standard approach within your team to
formatting dynamic SQL strings. You might otherwise have different developers
inserting different amounts and kinds of whitespace into dynamic SQL strings,
resulting in unnecessary reparsing of logically equivalent cursors.

,ch06.15052 Page 112 Friday, June 15, 2001 5:46 PM

113

Chapter7

7
7.Program

Construction

There are three kinds of programs (also known as modules) in PL/SQL:

Procedure
A procedure is a program that executes one or more statements. It’s
called as a standalone statement.

Function
A function is a program that executes one or more statements and
returns a value. It’s called within an expression (assignment state-
ment, conditional expression, etc.).

Trigger
A trigger is a program whose execution is “triggered” by some event,
usually a SQL operation on a table or column within a table.

All of these are named, executable code units. A package, as described in
Chapter 8, Package Construction, is a container for procedures and/or
functions, as well as data. Packages, therefore, aren’t executable objects
themselves.

Structure and Parameters
The best practices in this section offer advice on how to structure your program
units and how best to design parameter lists.

,ch07.15182 Page 113 Friday, June 15, 2001 5:46 PM

114 Chapter 7: Program Construction

MOD-01: Encapsulate and name business rules and formulas
behind function headers.

This is one of the most important best practices you will ever read—and, I hope,
follow. The one aspect of any software project that never changes is that stuff
always changes. Business requirements, data structures, user interfaces: all these
things change and change frequently. Your job as a programmer is to write code
that adapts easily to these changes.

So whenever you need to express a business rule (such as, “Is this string a valid
ISBN?”), put it inside a subroutine that hides the individual steps (which might
change) and returns the results (if any).

And whenever you need a formula (such as, “the total fine for an overdue book is
the number of days overdue times $.50”), express that formula inside its own
function.

Example

Suppose that you must be at least 10 years old to borrow books from the library.
This is a simple formula and very unlikely to change. I set about building the
application by creating the following trigger:

CREATE OR REPLACE TRIGGER are_you_too_young
 AFTER insert OR update
 ON borrower FOR EACH ROW
BEGIN
 IF :new.date_of_birth >
 ADD_MONTHS (SYSDATE, -12 * 10)
 THEN
 RAISE_APPLICATION_ERROR (
 -20703,
 'Borrower must be at least 10 yrs old.');
 END IF;
END;
/

Later, while building a batch-processing script that checks and loads over 10,000
borrower applications, I include the following check in the program:

BEGIN
 ...
 IF ADD_MONTHS (SYSDATE, -122) > rec.date_of_birth
 THEN
 err.log ('Borrower ' || rec.borrower_id ||
 ' is not ten years old.');
 ELSE
 ...load the data

And so on from there. I am left, unfortunately, with a real job on my hands when I
get a memo that says: “The minimum age for a library card has been changed
from 10 to 8 in order to support a new city-wide initiative to increase literacy.”
And then, of course, there are also the two bugs I introduced into my second

,ch07.15182 Page 114 Friday, June 15, 2001 5:46 PM

Structure and Parameters 115

construction of the rule. Did you notice them and the inconsistent error messages?
The IF statement should read:

IF ADD_MONTHS (SYSDATE, -120) < rec.date_of_birth

If only I had created a simple function the first time I needed to calculate
minimum valid age! Something like this:

CREATE OR REPLACE FUNCTION borrower_old_enough (
 dob_in IN DATE)
 RETURN BOOLEAN
IS
BEGIN
 RETURN NVL (
 dob_in < ADD_MONTHS (SYSDATE, -10 * 12),
 FALSE
);
END;

And now I even check for a NULL value, which I forgot to do in those other
programs.

Benefits

You can update business rules and formulas in your code about as quickly and as
often as users change everything that was supposedly “cast in stone.” Developers
apply those rules consistently throughout the application base, since they are
simply calling a program.

Your code is much easier to understand, since developers don’t have to wade
through complex logic to understand which business rule is being implemented.

Challenges

It’s mostly a matter of discipline and advance planning. Before you start building
your application, create a set of packages to hold business rules and formulas for
distinct areas of functionality. Make sure that the names of the packages clearly
identify their purpose. Then promote and use them rigorously throughout the
development organization.

MOD-02: Standardize module structure using function and
procedure templates.

Once you adopt a set of guidelines for how developers should write procedures
and functions, you need to help those developers follow their best practices. The
bottom line is that guidelines will be followed if you make it easier to follow them
than to ignore them.

For module standards, you can use either of the following approaches:

• Create a static template file that contains the generic logical structure for a
procedure and/or function. Developers then copy that file to their own file,
“de-genericize” the template by performing search and replace operations on
placeholder strings with their own specific values (such as table names), and
modify it from there.

,ch07.15182 Page 115 Friday, June 15, 2001 5:46 PM

116 Chapter 7: Program Construction

• Use a program (one that you’ve written or a commercially available tool) that
generates the code you want. This approach can be more flexible and can
save you time, depending on how sophisticated a generator you use/create.

Example

Here’s a simple function template that reinforces the single RETURN recommenda-
tion (MOD-07) and encourages a standard header and consistent exception
handling:

CREATE OR REPLACE FUNCTION <name> (
 <parm>_in IN <datatype>
)
 RETURN <datatype>
/*
|| STANDARD COPYRIGHT STATEMENT HERE
|| Author:
|| File:
*/
IS
 retval <datatype> := <default value>;;
BEGIN
 -- Put your code here

 RETURN retval;
EXCEPTION
 WHEN OTHERS
 THEN
 err.handle;
END <name>;

And here’s an example that uses PLVgen (the code generation package from
PL/Vision) to generate a standard function for a numeric datatype:

SQL> exec PLVgen.func ('total_pages', 1);
CREATE OR REPLACE FUNCTION total_pages
 RETURN NUMBER
/*
|| Program: total_pages
|| Author: null
|| File: total_pages.SQL
|| Created: November 16, 2000 15:57:03
||
|| Modification History:
|| Date Who Description
|| ---------- ------- ---------------------
*/
IS
 retval NUMBER := NULL;
BEGIN
 PLVxmn.trace ('total_pages',
 PLVxmn.l_start, 'Starting program');

 /* Your executable code here... */

 PLVxmn.trace ('total_pages',

,ch07.15182 Page 116 Friday, June 15, 2001 5:46 PM

Structure and Parameters 117

 PLVxmn.l_end, 'Ending program');

 RETURN retval;

EXCEPTION
 /* Call PLVexc in every handler. */
 WHEN OTHERS
 THEN
 PLVexc.recNgo;
 RETURN NULL;
END total_pages;
/

One might argue that it’s overkill to put trace calls (PLVxmn.trace)
into such a simple function. You need to decide, on a case-by-case
basis, which functions can and should absorb the tracing over-
head. In PLVgen, you can set a switch to turn off inclusion of these
calls.

Benefits

The quality of each individual program is higher, since it’s more likely to conform
to best practices.

Programs are more consistent across the team and therefore easier to maintain and
enhance.

Challenges

First, you must decide on your basic formats, including standards for error
handling. Then, you can either create template files or a basic code generator.
Make doubly sure they are correct. Can you check whether they are being used?
Can source code be auto-validated to check whether developers are altering the
basic framework?

Resources

template.fun and template.pro : Function and procedure template files.

genmods.pkg : A simple prototype of a function generator.

MOD-03: Limit execution section sizes to a single page using
modularization.

Sure, you’re laughing out loud. You write code for the real world. It’s really
complicated. Fifty or sixty lines? You’re lucky if your programs are less than 500
lines! Well, it’s not a matter of complexity; it’s more an issue of how you handle
that complexity.

If your executable sections go on for hundreds of lines, with a loop starting on
page 2 and ending on page 6 and so on, you will have a hard time “grasping the
whole” and following the logic of the program.

,ch07.15182 Page 117 Friday, June 15, 2001 5:46 PM

118 Chapter 7: Program Construction

An alternative is to use step-wise refinement (a.k.a. “top down decomposition”):
don’t dive into all the details immediately. Instead, start with a general description
(written in actual code, mind you) of what your program is supposed to do. Then
implement all subprogram calls in that description following the same method.

The result is that at any given level (PL/SQL block) of refinement, you can take in
and easily comprehend the full underlying logic at that level. This technique is
also referred to as “divide and conquer.”

Example

Consider the following procedure. The entire program might be hundreds of lines
long, but the main body of assign_workload (starting with BEGIN /*main*/) is
only 15 lines long. Not only that, I can read it pretty much as an exciting novel:
“For every telesales rep, if that person’s case load is less than their department’s
average, assign the next open case to that person and schedule the next appoint-
ment for that case.”

CREATE OR REPLACE PROCEDURE assign_workload
IS
/* Overview: For every telesales rep, if that person's case load is less
than their department's average, assign the next open case to that person
and schedule the next appointment for that case. */
 ... declarations of cursors and variables

 -- Local module declarations of full programs
 PROCEDURE assign_next_open_case (
 telesales_id_in IN NUMBER, case_out OUT NUMBER)
 IS BEGIN
 ... full, local implementation;
 END assign_next_open_case;

 FUNCTION next_appointment (case_in IN NUMBER)
 RETURN DATE ... END next_appointment;

 PROCEDURE schedule_case (case_in IN NUMBER,
 date_in IN DATE) ... END schedule_case;

BEGIN /*main*/
 FOR telesales_rec IN telesales_cur
 LOOP
 IF analysis.caseload (
 telesales_rec.telesales_id) <
 analysis.avg_cases (
 telesales_rec.department_id);
 THEN
 assign_next_open_case (
 telesales_rec.telesales_id, case#);
 schedule_case (
 case#, next_appointment (case#));
 END IF;
 END LOOP;
END assign_workload;

,ch07.15182 Page 118 Friday, June 15, 2001 5:46 PM

Structure and Parameters 119

Benefits

You can implement complicated functionality with a minimum number of bugs by
using step-wise refinement. Local modules and packaged programs play a major
role in keeping each executable section small.

A developer can understand and maintain a program with confidence if he can
read and grasp the logic of the code.

Challenges

You have to be disciplined about holding off writing the low-level implementa-
tion of functionality. Instead, come up with accurate, descriptive names for
packages, procedures, and functions that contain the implementations themselves.

Resources

http://www.construx.com : Contains lots of good advice on writing modular code.

MOD-04: Use named notation to clarify, self-document, and
simplify module calls.

PL/SQL allows you to specify the name of a parameter along with its value in a
parameter list by using this format:

parameter name => value

This is called named notation. With named notation, you can change the order in
which you supply arguments; you can also skip over IN arguments with default
values.

Use named notation whenever you make a call to a program that has any of the
following characteristics:

• It has a long, confusing parameter list.

• It’s used infrequently, meaning that there is little familiarity with it or its
parameter list.

• It has default values for multiple IN parameters.

• In some cases, it actually requires named notation due to the parameter list
design of overloaded programs (as is necessary with the built-in package,
DBMS_OBFUSCATION_TOOLKIT).

Example

Here’s a procedure call that relies solely on positional notation (the default in
PL/SQL):

IF perform_insert
THEN
 PLGdoir.ins (
 drv,
 c_table,
 NVL (aname, c_global),
 NVL (atype, c_global),
 text_in,

,ch07.15182 Page 119 Friday, June 15, 2001 5:46 PM

120 Chapter 7: Program Construction

 v_info
);
END IF;

I wrote that code, but I sure can’t remember which parameter is going to get set to
text_in. Here’s another call to the same program:

IF v_tab = c_global
THEN
 PLGdoir.ins (
 driver_in => drv,
 objtype_in => c_table,
 attrname_in => c_global,
 attrtype_in => c_global,
 infotype_in => text_in,
 info_in => v_info
);

Now I don’t have to wonder; the code tells me exactly what is going on.

Benefits

You will experience a dramatic improvement in the readability of the program
calls inside your code.

Named notation also offers greater flexibility in how you construct your parameter
lists.

Challenges

You need to know or look up the names of arguments. For this reason, I can’t
support a recommendation of always using named notation. It would be most
useful, on the other hand, if tools that generate code automatically follow named
notation to enhance readability.

Resources

namednot.sql : A file that demonstrates the different ways you can use named and
positional notation to invoke a procedure.

MOD-05: Avoid side-effects in your programs.

Build lots of individual programs, preferably inside packages. Design each
program so that it has a single, clearly defined purpose. That purpose should, of
course, be expressed in the program’s name, as well as in the program header.

Avoid throwing extraneous functionality inside a program. Such statements are
called “side-effects” and can cause lots of problems for people using your code—
which means your code won’t get used, except perhaps as source for a cut-and-
paste session (or—in hard-copy form—for kindling).

Example

Here’s a program that by name and “core” functionality displays information about
all books published within a certain date range:

CREATE OR REPLACE PROCEDURE display_book_info (
 start_in IN DATE,

,ch07.15182 Page 120 Friday, June 15, 2001 5:46 PM

Structure and Parameters 121

 end_in IN DATE)
IS
 CURSOR book_cur
 IS
 SELECT *
 FROM book
 WHERE date_published BETWEEN start_in
 AND end_in;
BEGIN
 FOR book_rec IN book_cur
 LOOP
 pl (book_rec.title || ' by ' ||
 book_rec.author);
 usage_analysis.update_borrow_history (
 book_rec);
 END LOOP;
END display_book_info;

Notice, however, that it also updates the borrowing history for that book. Now, it
might well be that at this point in time the display_book_info procedure is called
only when the borrowing history also needs to be updated, justifying to some
extent the way this program is written.

However, regardless of current requirements, the name of the program is clearly
misleading; there is no way to know that display_book_info also updates
borrowing history. This is a hidden side-effect, and one that can cause serious
problems over time.

Benefits

Your code can be used with greater confidence, since it does only what it says
(via its name, for the most part) it’s going to do. Developers will call and combine
single-purpose programs as needed to get their job done.

MOD-06: Use NOCOPY to minimize overhead when
collections and records are [IN] OUT parameters (Oracle8i).

When you pass arguments through the parameter list of a program, those argu-
ments can be passed by reference or by value:

• By reference means that the data structure manipulated inside the program
points to the same location in memory that holds the value of the argument.

• By value means that the value of the argument is copied into the data struc-
ture of the program, and then copied back out to the argument data structure
if no exception occurs.

Parameter passing in PL/SQL by default follows these rules:

• IN arguments are passed by reference.

• OUT and IN OUT arguments are passed by value.

This means that when you pass a large data structure (such as a collection, a
record, or an instance of an object type) as an OUT or IN OUT parameter, your
application can experience performance and memory degradation due to all this
copying.

,ch07.15182 Page 121 Friday, June 15, 2001 5:46 PM

122 Chapter 7: Program Construction

If you experience such degradation, you can consider two options:

• Use the Oracle8i NOCOPY hint to ask the PL/SQL compiler to not make a
copy of your data structure.

• “Globalize” the data structure, so that instead of passing that large, complex
structure as an argument, you reference it directly within the program.

Example

Here’s a parameter list that uses the NOCOPY hint for both of its IN OUT
arguments:

PROCEDURE analyze_results (
 date_in IN DATE,
 values IN OUT NOCOPY numbers_varray,
 validity_flags IN OUT NOCOPY validity_rectype
);

Remember that NOCOPY is a hint, not a command. This means that the compiler
might silently decide it can’t fulfill your request for a NOCOPY parameter treat-
ment. See my book, Oracle PL/SQL Programming: Guide to Oracle8i Features, for
more details.

To globalize a data structure, you want to create (if not already present) a package
that can define and hold this persistent data structure. The “Resources” section
offers an example script that allows you to compare the two approaches. Here,
however, is the package specification, showing two versions of the same program
(passtab)—one that accepts the collection as an argument, another that references
it directly:b

CREATE OR REPLACE PACKAGE pkgvar
IS
 TYPE reward_rt IS RECORD (
 nm VARCHAR2(2000),
 comm NUMBER);

 TYPE reward_tt IS TABLE OF reward_rt
 INDEX BY BINARY_INTEGER;

 globtab reward_tt;

 PROCEDURE passtab (parmtab IN OUT reward_tt);
 PROCEDURE passtab;
END;
/

Benefits

You can improve the performance of your application. You should consider either
alternative, however, only after you have identified a clear performance problem
in specific programs.

Challenges

If you use NOCOPY or globalized data structures, the PL/SQL runtime engine no
longer “roll back” changes when an exception occurs in your program. You can,
as a consequence, end up with a data structure that is only partially updated.

,ch07.15182 Page 122 Friday, June 15, 2001 5:46 PM

Functions 123

Resources

pkgvar.pkg and pkgvar.tst: A package and test script to both demonstrate the
globalization technique and test its performance impact.

nocopy.tst, nocopy2.tst, and nocopy3.tst : Examples of scripts that examine the
impact of the NOCOPY statement.

Functions
Functions are program units that return a value through the RETURN clause of the
program header.

MOD-07: Limit functions to a single RETURN statement in
the execution section.

A good general rule to follow as you write your PL/SQL programs is: “one way in
and one way out.” In other words, there should be just one way to enter or call a
program (there is; you don’t have any choice in this matter). And there should be
one way out, one exit path from a program (or loop) on successful termination.
By following this rule, you end up with code that is much easier to trace, debug,
and maintain.

For a function, this means you should think of the executable section as a funnel;
all the lines of code narrow down to the last executable statement:

RETURN return value;

Note the following:

• You can, and should, still have RETURN statements in your exception han-
dlers. Not every exception should be passed unhandled from your function.
See EXC-07 for more information.

• It’s possible (i.e., acceptable syntax) to use an “unqualified” RETURN state-
ment in a procedure, as follows:

IF all_done
THEN
 RETURN;
END IF;

and the procedure immediately terminates and returns control. You shouldn’t
do this, however, as it results in unstructured code that’s hard to debug and
maintain This same recommendation holds for the initialization section of a
package.

Example

Here’s a simple function that relies on multiple RETURNs:

CREATE OR REPLACE FUNCTION status_desc (
 cd_in IN VARCHAR2
)
 RETURN VARCHAR2
IS
BEGIN

,ch07.15182 Page 123 Friday, June 15, 2001 5:46 PM

124 Chapter 7: Program Construction

 IF cd_in = 'C'
 THEN
 RETURN 'CLOSED';
 ELSIF cd_in = 'O'
 THEN
 RETURN 'OPEN';
 ELSIF cd_in = 'I'
 THEN
 RETURN 'INACTIVE';
 END IF;
END;

At first glance, this function looks very reasonable. Yet this function has a deep
flaw, due to the reliance on separate RETURNs: if you don’t pass in “C”, “O”, or “I”
for the cd_in argument, the function raises:

ORA-06503: PL/SQL: Function returned without value

Here’s a rewrite that relies on (a) a standard types package that avoids hard-
coding a VARCHAR2 variable length (see DAT-13) and also gives names to literal
values, and (b) a single RETURN at the end of the function:

CREATE OR REPLACE FUNCTION status_desc (
 cd_in IN VARCHAR2
)
 RETURN stdtypes.description_t
IS
 retval stdtypes.description_t;
BEGIN
 IF cd_in = stdtypes.c_closed_abbrev THEN
 retval := stdtypes.c_closed;
 ELSIF cd_in = stdtypes.c_open_abbrev THEN
 retval := stdtypes.c_open;
 ELSIF cd_in = stdtypes.c_inactive_abbrev ' THEN
 retval := stdtypes.c_inactive;
 END IF;
 RETURN retval;
END;

This program also safely and correctly returns NULL if the program doesn’t receive
a value of “C”, “O”, or “I”, unlike the first implementation.

Benefits

You’re less likely to write a function that raises the exception “ORA-06503: PL/SQL:
Function returned without value”—a nasty and embarrassing error.

A single RETURN function is easier to trace and debug, since you don’t have to
worry about multiple exit pathways from the function.

Resources

genmods.pkg : A simple prototype of a function generator.

,ch07.15182 Page 124 Friday, June 15, 2001 5:46 PM

Functions 125

MOD-08: Keep functions pure by avoiding [IN] OUT
parameters.

The whole point of a function is to return a value (whether it’s a single, scalar
value or a composite, such as a record or a collection). If you also return data
back through the parameter list with OUT or IN OUT arguments, the purpose and
usage of the function is obscured. Oracle also places restrictions on how you can
use functions that have OUT and IN OUT parameters—namely, you can’t call that
function from within a SQL statement.

If you need to return multiple pieces of information, take one of the following
approaches:

Return a record or collection of values
Make sure to publish the structure of your record or collection (the TYPE
statement) in a package specification so that developers can understand and
use the function more easily. Note that you can’t call this function in a SQL
statement if it returns a record or index-by table.

Break up the single function into multiple functions, all returning scalar values
With this approach, you can call the functions from within SQL statements.

Change your function into a procedure
Unless you need to call a function to return this information, just change it to
a procedure returning multiple pieces of information.

Example

Here’s a function that returns several pieces of information about a book:

FUNCTION book_info (
 isbn_in IN book.isbn%TYPE,
 author_out OUT book.author%TYPE,
 page_count_out OUT book.page_count%TYPE)
 RETURN book.title%TYPE;

And now I use this function:

 l_title book.title%TYPE;
BEGIN
 l_title :=
 book_info (l_isbn, l_author, l_page_count);

Very confusing! The function seems to return a title, but what else does it do? It’s
hard to tell what is happening with the other parameters.

If, on the other hand, I restructure the function to return a record:

FUNCTION book_info (
 isbn_in IN book.isbn%TYPE)
 RETURN book%ROWTYPE;

the intent of the resulting code is more clear:

 one_book_rec book%ROWTYPE;
BEGIN
 one_book_rec := book_info (l_isbn);

,ch07.15182 Page 125 Friday, June 15, 2001 5:46 PM

126 Chapter 7: Program Construction

Benefits

Your functions are more likely to be used and reused, because they are defined in
ways that make them easy to understand and apply in your own code.

Your function may then be callable from within a SQL statement, which encour-
ages even wider use of this program. A function with an OUT argument can never
be called from within SQL, Please note, though, that there are other restrictions on
function calls from SQL. You may not, for example, call a function that returns a
record (as shown in the preceding example).

Challenges

You may need (or feel the need) to pass back status information as well as the
data returned by the function. This comes up when calling PL/SQL code from non-
Oracle languages such as Visual Basic. In this case, consider using a procedure
instead of a function.

MOD-09: Never return NULL from Boolean functions.

A Boolean function should return only TRUE or FALSE. If a Boolean function
returns a NULL, how should the user of that function interpret and respond to that
value? Does it indicate you passed in invalid data? Should it be considered TRUE
or FALSE? Or should the developer test explicitly for NULL? Well, we should do
explicit tests for NULL if we are uncertain about the function’s behavior, but we
rarely remember to do so or feel it’s necessary to make the effort. Instead, we
check for TRUE or FALSE and thus allow bugs to creep into our code.

If the Boolean function can return NULL, you probably need to look at the imple-
mentation of the function to determine the action to take on a NULL return value.
Yet you will not always be able to (or want to) look at the function’s body.

A non-Boolean function can use a NULL return value to indicate failure. A func-
tion that returns the title of a book for an ISBN number returns NULL for an
invalid ISBN. That makes sense. On the other hand, a function that tells you
whether or not a book is in print doesn’t help you much if it returns NULL.

Example

Here’s a function that determines if a string is a valid ISBN number (it’s not fool-
proof, but it gets across the basic idea):

CREATE OR REPLACE FUNCTION is_valid_isbn (
 isbn_in IN VARCHAR2)
 RETURN BOOLEAN
-- Ten digits separated by 4 hyphens
IS
 l_isbn book.isbn%TYPE;
BEGIN
 l_isbn := TRANSLATE (isbn_in, 'A-', 'A'); -- strip hyphens
 RETURN (LENGTH (l_isbn) = 10
 AND l_isbn + 0 = l_isbn);
 -- adding zero tests for numeric
EXCEPTION
 WHEN OTHERS THEN RETURN FALSE;

,ch07.15182 Page 126 Friday, June 15, 2001 5:46 PM

Triggers 127

END is_valid_isbn;
/

And it works pretty well:

SQL> exec bpl (is_valid_isbn ('1-2-3-4'))
FALSE
SQL> exec bpl (is_valid_isbn ('1-12345-123-5'))
TRUE

But it returns NULL if an “empty” string is passed to it, which means that any use
of is_valid_isbn should be combined with the NVL function, as in:

IF NVL (is_valid_isbn (l_isbn), FALSE)

The need to rely on NVL reduces the usefulness of the function. It should be
rewritten to guarantee only one of two values returned: TRUE or FALSE. You will
find such a rewrite in the file listed in the “Resources” section.

Benefits

Developers are more likely to use your function within their application code.

Resources

isvalidisbn.fun : This file contains the two implementations described in the
example

Triggers
Database triggers are a crucial part of any well-designed application. By placing
logic in a trigger, you associate business rules closely with the database object,
guaranteeing that these rules are always applied to any action taken against the
object.

MOD-10: Minimize the size of trigger execution sections.

Limit the number of lines of code in a trigger—even to the point of moving code
into procedures, functions, or packages and calling them from the trigger.

Prior to Oracle7 Release 7.3, trigger code wasn’t even stored in the database in
compiled form. Each time a trigger was executed, it would also have to be
compiled. Under these conditions, it was absolutely critical to move as much
trigger code as possible to stored, precompiled procedures in order to improve the
trigger’s execution time.

Now, triggers are compiled just as procedures and functions are. Still, you should
move as much of your business logic as possible to packaged programs.

Example

Well, I could offer an example of pages and pages of code that are replaced by a
single procedure call. That would certainly drive the point home—but at the

,ch07.15182 Page 127 Friday, June 15, 2001 5:46 PM

128 Chapter 7: Program Construction

expense of a few more trees. So instead, here is a very small trigger, but one that
still exposes a business rule that should be hidden:

CREATE OR REPLACE TRIGGER check_employee_age
BEFORE INSERT OR UPDATE ON employee
BEGIN
 IF ADD_MONTHS (SYSDATE, -216) < :NEW.hire_date
 THEN
 RAISE_APPLICATION_ERROR (-20706,
 'Employee must be 18 to work here!');
 END IF;
END;

A much improved implementation would be:

CREATE OR REPLACE TRIGGER check_employee_age
BEFORE INSERT OR UPDATE ON employee
BEGIN
 IF employee_rules.emp_too_young (:NEW.hire_date)
 THEN
 err_pkg.rase (employee_rules.c_errnum_emp_too_young,
 :NEW.employee_id);
 END IF;
END;

Now that business rule (which in the “real world” might have been very complex
and taken up several lines of code) is moved to the package. I have also avoided
the hard-coding of a RAISE_APPLICATION_ERROR call relying on my standard
error package (see EXC-04).

Benefits

Keeping trigger code small provides a modular code layout that’s easy to maintain
and debug.

You greatly reduce the chance of introducing redundant business rule logic into
your application if you always insist on moving such logic to packages.

Challenges

Within a row-level trigger, you can reference the old and new values of the row’s
columns with the :NEW and :OLD pseudo-records. You can’t, however, pass these
structures as parameters, nor can you reference them in dynamic SQL code. These
restrictions often force you to write more—and very cumbersome—logic than
desired in the trigger. See the “Resources” section for a program you can use to
generate code that will at least save you some time in dealing with :OLD and
:NEW.

Resources

genmods.pkg : The genmods.use_new and genmods.use_old procedures within this
package generate procedure calls that “explode” the pseudo-records into indi-
vidual arguments (one per column) that can be passed to stored programs.
Here’s an example session:

SQL> exec genmods.use_new ('employee', 'myprog')
myprog (
 :NEW.EMPLOYEE_ID,

,ch07.15182 Page 128 Friday, June 15, 2001 5:46 PM

Triggers 129

 :NEW.LAST_NAME,
 :NEW.FIRST_NAME,
 :NEW.MIDDLE_INITIAL,
 :NEW.JOB_ID,
 :NEW.MANAGER_ID,
 :NEW.HIRE_DATE,
 :NEW.SALARY,
 :NEW.COMMISSION,
 :NEW.DEPARTMENT_ID,
 :NEW.EMPNO,
 :NEW.ENAME,
 :NEW.CREATED_BY,
 :NEW.CREATED_ON,
 :NEW.CHANGED_BY,
 :NEW.CHANGED_ON
);

MOD-11: Consolidate “overlapping” DML triggers to control
execution order.

While it’s possible to create many DML triggers of the same type on a table, it isn’t
possible to guarantee the order in which they fire. While several theories abound
about firing order (including reverse order of creation or object ID), it isn’t advis-
able to rely on theories when designing database triggers. Instead, you should
consolidate into a single trigger all triggers that fire under the same conditions.

Example

When inserting a value of 1 for the following ID field, what value will wind up in
the table?

CREATE OR REPLACE TRIGGER increment_by_one
BEFORE INSERT ON id_table
FOR EACH ROW
BEGIN
 :new.id := :new.id + 1;
END;
/

CREATE OR REPLACE TRIGGER increment_by_two
BEFORE INSERT ON id_table
FOR EACH ROW
BEGIN
 IF :new.id > 1 THEN
 :new.id := :new.id + 2;
 END IF;
END;
/

The answer is, in reality, indeterminate; you can’t accurately predict the behavior
of such a system of triggers.

,ch07.15182 Page 129 Friday, June 15, 2001 5:46 PM

130 Chapter 7: Program Construction

Benefits

You don’t have to be concerned about the order in which triggers fire when the
application is rebuilt, moved, or upgraded.

Challenges

It may be difficult to move complex code into a single trigger.

You may also have some trouble identifying triggers that fire under the same
conditions. See the “Resources” section for a query you can run that should help
answer this question.

Resources

multiple_triggers.sql : Contains a detailed working version of the example.

trigger_conflict.sql : A simple query against the USR_TRIGGERS data dictionary
view that helps you identify potentially conflicting triggers.

MOD-12: Raise exceptions to report on do-nothing INSTEAD
OF triggers.

If you execute an UPDATE statement and it doesn’t identify any rows to update,
Oracle doesn’t raise an error. In many cases, that is fine. In other cases, it might
indicate an error. The situation is the same with INSTEAD OF triggers. These trig-
gers allow you to specify an alternative operation that will take place instead of
the normal DML action with which the trigger is associated.

If the INSTEAD OF trigger doesn’t execute any DML at all but doesn’t raise an
exception, it doesn’t report any error back to the calling program. While in some
cases this may be the desired behavior, you usually want to raise an exception,
and perhaps also log the fact that a failure occurred

Example

Consider the following rather selfish trigger. I have created a view called best_
sellers that sits on top of the book table. When you insert a row into best_sellers,
it actually inserts a row only if the publisher of the book is O’Reilly & Associates!

CREATE OR REPLACE TRIGGER instead_of_best_sellers
 INSTEAD OF INSERT
 ON best_sellers
BEGIN
 IF :new.publisher = 'O''REILLY & ASSOCIATES'
 THEN
 INSERT INTO book (
 author, title, isbn, publisher)
 VALUES (
 :new.author, :new.title, :new.isbn, :new.publisher);
 END IF;
END;

That’s an unethical thing to do, but with the way the trigger is written, there’s no
immediate notification that a best seller by, say, Oracle Press, wasn’t added to the
table. Here’s a more principled and appropriate way to write this code:

,ch07.15182 Page 130 Friday, June 15, 2001 5:46 PM

Triggers 131

CREATE OR REPLACE TRIGGER instead_of_best_sellers
 INSTEAD OF INSERT
 ON best_sellers
BEGIN
 IF :new.publisher = 'O''REILLY & ASSOCIATES'
 THEN
 INSERT INTO book (
 author, title, isbn, publisher)
 VALUES (
 :new.author, :new.title, :new.isbn, :new.publisher);
 ELSE
 err_pkg.raise (book_rules.c_errnum_only_oreilly);
 END IF;
END;

Now, at least the user is notified of the acceptable types of books for best sellers!

Benefits

Phantom DML operations are diagnosed and reported; you aren’t left to wonder
what actually happened when the trigger fired.

You get back a positive indication that the DML failed, just as you do in the case
of failed DML on a table.

Resources

instead_of_nothing.sql : Contains a complete example of handling the situation
versus not handling the situation.

MOD-13: Implement server problem logs and “to do” lists
using database triggers.

Oracle8i now offers database-level triggers that can be fired on events such as
LOGON, LOGOFF, and SERVERERROR. These triggers offer all sorts of new possi-
bilities for a DBA but can sometimes lead to problems.

Suppose, for instance, that an application encounters the ORA-01659 error
(“unable to allocate next extent”). The solution is to add a data file to the appli-
cable tablespace. With a SERVERERROR trigger, you can actually trap this problem
and, right on the spot, add a data file. That’s all well and good, but while the data
file is being added (which can take quite a while), the user process is blocked.
Imagine a poor end user sitting at his terminal staring at a blank screen for 10
minutes while the database adds a dataflow to fix an error he wasn’t even aware
had occurred.

A far superior approach to take is to first, adopt as a guiding principle that when-
ever possible the user process is allowed to continue uninterrupted. The
SERVERERROR trigger should then simply logs an error or, even better, sends a
message to a DBA (via the Oracle Advanced Queuing facility, for example) or
builds a to-do list. This list can then be parsed and processed by a background
database job run at regular intervals.

Database-level triggers fire as autonomous transactions, making it far easier to
place an entry into a “to do” table, without affecting the user transaction.

,ch07.15182 Page 131 Friday, June 15, 2001 5:46 PM

132 Chapter 7: Program Construction

Example

Here’s a simple SERVERERROR trigger that adds an item to the DBA to-do list:

CREATE OR REPLACE TRIGGER db_error_handler
AFTER SERVERERROR ON DATABASE
BEGIN
 IF ORA_IS_SERVERERROR (-1659) THEN
 db_to_do_list.add_item('ADD_DATAFILE');
 END IF;
END;

Benefits

Processes that encounter errors don’t have to wait for the complete fix.

This is a good way to build in logging that helps identify database or application
problems at a low level of database operations.

Challenges

You must ensure that the “to-do” list is processed in a timely manner while not
overwhelming database resources.

Sometimes, the information required to fix an error isn’t obvious or available
within the confines of the trigger. In the preceding example, the name of the
tablespace requiring a data file isn’t readily available. You can, however, obtain
the table name from ora_dict_obj_name (see MOD-14), and from that derive the
tablespace name.

MOD-14: Use ORA_% public synonyms to reference database
and schema event trigger attributes.

Within the confines of DDL and database event triggers, there is a lot of informa-
tion available about what specifically caused the trigger to fire, for example, the
exact table and column or the name of the user. This information is available via a
set of PL/SQL functions contained in the DBMS_STANDARD package. Always
reference these functions via the public synonyms (ORA_%) also provided (and
defined in the dbmstrig.sql file in the Rdbms/Admin subdirectory of installed
Oracle software).

Here’s a small subset of the functions available (consult dbmstrig.sql for a
complete list):

• ora_sysevent: The system event that invokes the system trigger

• ora_dict_obj_owner: The object owner on which the DDL statement is being
done

• ora_dict_obj_name: The object name on which the DDL statement is being
performed

Example

CREATE OR REPLACE TRIGGER after_create
AFTER CREATE ON SCHEMA
DECLARE
 /*

,ch07.15182 Page 132 Friday, June 15, 2001 5:46 PM

Triggers 133

 || The BAD way. Direct calls to the functions in DBMS_STANDARD
 */
 v_type VARCHAR2(30) := DICTIONARY_OBJ_TYPE;
 v_name VARCHAR2(30) := DICTIONARY_OBJ_NAME;
BEGIN
 -- the GOOD way; via the synonyms
 INSERT INTO log_create
 VALUES(ORA_DICT_OBJ_TYPE,
 ORA_DICT_OBJ_NAME);
 -- the BAD way; via direct calls
 INSERT INTO log_create
 VALUES(v_type,
 v_name);
END;

Benefits

Your code is protected from future changes.

Resources

always_use_ora.sql : Contains the preceding example.

MOD-15: Validate complex business rules with DML triggers.

Foreign key, NOT NULL, and check constraints provide mechanisms to validate
simple business rules like:

An account transaction must be for a valid account.

or:

If the transaction type is DEP the amount must be entered.

However, there are some cases they simply can’t handle. Consider the following
requirements:

If the account transaction has been approved, it can’t be updated.

Account transactions can’t be created with approved status.

Regardless of the complexity of the logic behind evaluating the approved status of
a transaction, it probably isn’t something a simple constraint can handle. In these
cases, database triggers step in with the ability to support arbitrarily complex logic,
while simultaneously guaranteeing that applications can’t sidestep the rules.

Example

Here are some examples of simple trigger logic that still can’t be handled with
constraints.

If the account transaction has been approved, it can’t be updated:

CREATE TRIGGER cannot_change_approved
BEFORE UPDATE ON account_transaction
FOR EACH ROW
BEGIN
 IF :OLD.approved_yn = constants.yes
 THEN

,ch07.15182 Page 133 Friday, June 15, 2001 5:46 PM

134 Chapter 7: Program Construction

 err_pkg.raise (account_rules.c_no_change_after_approval);
 END IF;
END;

Account transactions can’t be created with approved status:

CREATE TRIGGER cannot_create_approved
BEFORE INSERT ON account_transaction
FOR EACH ROW
BEGIN
 IF :NEW.approved_yn = 'Y'
 THEN
 err_pkg.raise (account_rules.c_no_preapproval);
 END IF;
END;

These business rules must be validated in triggers because the type of DML being
performed must be recognized, and the developer needs access to old and new
values. This information isn’t available within NOT NULL, referential integrity, or
check constraints.

Benefits

Careful planning and design allow even the most complex business rules to be
validated in DML triggers.

If business rules are checked with triggers, user interfaces aren’t required to check
them. This makes changes easier to implement.

MOD-16: Populate columns of derived values with triggers.

Some applications require that extra information be stored in a record whenever
it’s inserted, updated, or deleted. This information may or may not be supplied by
the application itself.

Example

In this example, the date a record is updated is recorded within the record itself:

CREATE OR REPLACE TRIGGER set_updated_fields
BEFORE UPDATE ON account_transaction
FOR EACH ROW
BEGIN
 IF :NEW.updated_date IS NULL
 THEN
 :NEW.updated_date := SYSDATE;
 END IF;
END;

Benefits

You can guarantee that the fields will be populated because all records are
processed by the triggers.

Challenges

If you have a set of standard columns whose values are set through triggers, those
columns should not be provided values in application DML statements. It would

,ch07.15182 Page 134 Friday, June 15, 2001 5:46 PM

Triggers 135

probably make sense to build views on top of the base tables that hide the
derived-value columns.

MOD-17: Use operational directives to provide more
meaningful error messages from within triggers.

You can create a single trigger that fires for more than one DML operation, as in:

CREATE OR REPLACE TRIGGER check_for_reserved_status
 BEFORE UPDATE OR INSERT ON book
FOR EACH ROW

This allows you to consolidate logic that must be applied to all these operations
into a single program unit. If you do this, however, you should take advantage of
built-in functions defined in the default DBMS_STANDARD package to help you
determine exactly which type of operation was executed.

Here are the headers of those special functions or “operational directives”:

FUNCTION INSERTING RETURN BOOLEAN;
FUNCTION DELETING RETURN BOOLEAN;
FUNCTION UPDATING RETURN BOOLEAN;
FUNCTION UPDATING (COLNAM VARCHAR2) RETURN BOOLEAN;

Example

This example allows a single trigger to ensure that approved transactions are
neither changed nor deleted, while displaying an informative message when they
are:

CREATE OR REPLACE TRIGGER check_approved
 BEFORE UPDATE OR DELETE
 ON account_transaction
 FOR EACH ROW
BEGIN
 IF :old.approved_yn = 'Y'
 THEN
 IF updating
 THEN
 err_pkg.raise (
 te_account_transaction.c_no_update_after_approved);
 ELSE
 err_pkg.raise (
 te_account_transaction.c_no_delete_after_approved);
 END IF;
 END IF;
END;

Benefits

Single triggers can provide meaningful messages.

,ch07.15182 Page 135 Friday, June 15, 2001 5:46 PM

136

Chapter8

8
Package
Construction 8.

Packages are the fundamental building blocks of any well-designed appli-
cation built in the Oracle PL/SQL language (at least until Oracle improves
the robustness of its object implementation!). A package consists of up to
two elements: the specification and the body. The specification tells a user
what she can do with the package: what programs can be called, what
data structures and user-defined types can be referenced, and so on. The
package body implements any programs in the package specification; it
can also contain private (i.e., not shown in the specification) data struc-
tures and program units.

PKG-01: Group related data structures and functionality
together in a single package.

Even if you don’t take advantage of features unique to packages, such as persis-
tent data, you can still use packages to organize—and store together—related code
and data structures.

Without packages, you might end up with several hundred standalone procedures
and functions and many repeated cursor, TYPE, and variable declarations.

A package gives a name to a set of program elements: procedures, functions, user-
defined types, variable and constant declarations, cursors, and so on. By creating a
package for each distinct area of functionality, you create intuitive containers for
that functionality.

Example

As I go about building a library management system, I quickly identify the
following functional areas:

,ch08.15305 Page 136 Friday, June 15, 2001 5:46 PM

Package Construction 137

Borrower information
Maintain underlying table, establish rules about who is a valid borrower.

Book information
Maintain underlying table, define validation for ISBN, and so on.

Borrowing history
Maintain underlying table that tracks who took out what and when.

Overdue fines
Collection of all formulas and business rules for processing overdue charges.

Special reservations
Maintain underlying table and collect all rules governing how a borrower can
reserve a book.

Publisher information
Maintain underlying table.

I can now create separate packages for each bunch of data or functional specifica-
tion. For example, the overdue package would contain all programs related to
calculating and displaying overdue fine information. If I need any TYPEs (collec-
tions and records, for example) to declare or manipulate overdue data, I would
also define those in the overdue package.

Benefits

It’s much easier to build, find, and maintain programs when they are organized by
logical area into separate packages.

Once you have segregated programs and data into their own packages, you can
more easily leverage special features of packages (persistent data, initialization
section, overloading) to improve performance and functionality.

Resources

te_employee.pks and te_employee.pkb : Table encapsulation packages feature “high
cohesion” (grouping together of related programs). Such packages offer a set
of procedures and functions that allow a developer to manipulate the under-
lying data structure (table or view) without writing any explicit SQL.

xfile.pkg : The xfile class (built on top of the JFile Java class) offers “one stop shop-
ping” for all file-related processing in a PL/SQL environment.

PKG-02: Provide well-defined interfaces to business data and
functional manipulation using packages.

Humans can handle only so much complexity at once. The details and nuances of
any decent-sized application overwhelm the human mind. Use packages to hide—
or at least attempt to organize—the mind-boggling complexity. Expose the under-
lying data and business rules in an orderly and manageable fashion through the
package specification.

This technique is crucially important when implementing core business rules in
your application. Every such rule should be hidden behind a function and defined
in the appropriate package.

,ch08.15305 Page 137 Friday, June 15, 2001 5:46 PM

138 Chapter 8: Package Construction

In addition, hide all the SQL for a given table or business entity behind a package
interface (this process is called table encapsulation). Rather than write an INSERT
statement in your program, call an insert procedure. See SQL-15 for more details.

Example

Let’s look at a simple example: building a timing utility. The DBMS_UTILITY.GET_
TIME built-in function returns the number of hundredths of seconds that have
elapsed since an arbitrary point in time. You call it twice and subtract the differ-
ence to calculate elapsed time (down to the hundredth of a second), as in:

DECLARE
 l_start PLS_INTEGER;
 l_end PLS_INTEGER;
BEGIN
 l_start := DBMS_UTILITY.GET_TIME;
 overdue.calculate_fines;
 l_end := DBMS_UTILITY.GET_TIME;
 pl ('Calculated fines in ' ||
 (l_end - l_start) / 100 || ' seconds');
END;

I have two concerns: (a) that’s a lot of code to write to simply calculate elapsed
time, and (b) the formula is exposed that calculates elapsed time. What if the
formula changes? Ah, you’re probably asking: How could a formula this simple
change? Well, it turns out that this formula can sometimes result in a negative
elapsed time, because DBMS_UTILITY.GET_TIME occasionally “rolls over” to zero.

So rather than writing code like that shown in the preceding example, you are
much better served by building a simple package as follows:

CREATE OR REPLACE PACKAGE tmr
IS
 PROCEDURE capture;
 PROCEDURE show_elapsed;
END tmr;
/
CREATE OR REPLACE PACKAGE BODY tmr
IS
 c_bignum INTEGER := POWER(2,32);
 last_timing NUMBER := NULL;

 PROCEDURE capture IS
 BEGIN
 last_timing := DBMS_UTILITY.GET_TIME;
 END capture;

 PROCEDURE show_elapsed IS
 BEGIN
 pl (MOD (DBMS_UTILITY.GET_TIME -
 last_timing + c_bignum, c_bignum));
 END show_elapsed;
END tmr;
/

,ch08.15305 Page 138 Friday, June 15, 2001 5:46 PM

Package Construction 139

This package-based implementation now allows you to calculate elapsed time as
follows:

BEGIN
 tmr.capture;
 overdue.calculate_fines;
 tmr.show_elapsed;
END;

Benefits

By using packages to hide complexity, you naturally employ stepwise refinement
(a.k.a. top-down design). The resulting code is easier to understand, use, and
maintain.

By hiding formulas, you can fix them and enhance them as needed over time.

Resources

tmr.pkg : The simplest version of the timer package

PLVtmr.pkg : A more complete implementation

tmr81.ot : An object-based timer

PKG-03: Freeze and build package specifications before
implementing package bodies.

Develop a “specifications first” discipline: put off writing package bodies as long
as possible. Instead, sit back, relax, and brainstorm about the kinds of things you
want to do with each package (based, of course, on requirements provided by the
users). Write out those things-to-do as procedure and function headers in the
specification. Do this for a whole bunch of packages you need to build.

Then try them out. Even if you don’t built the package bodies, you can still write
programs based on the headers. By doing this, you often uncover errors in the
requirements, missing parameters, and so on. Since you haven’t yet written the
implementations, it’s easy to clarify what the user wants and modify the package
specifications.

Once you are confident that the specifications reflect the application needs, dive
into those package bodies!

Example

We are building a telesales call management system. Management just told us that
due to the upcoming IPO, we have to get everything done in two months. Yikes!
My first inclination is to start writing code madly, but the DBAs haven’t finished
designing the tables, and the users are still thrashing. I can’t wait, though, so I take
what requirements have been set and brainstorm via package specifications.

I know that I have to do some analysis, so I quickly put together this specification:

CREATE OR REPLACE PACKAGE analysis
IS
 FUNCTION avg_workload (
 dept_id IN INTEGER) RETURN NUMBER;

,ch08.15305 Page 139 Friday, June 15, 2001 5:46 PM

140 Chapter 8: Package Construction

 FUNCTION workload (
 operator_id IN INTEGER) RETURN NUMBER;
 FUNCTION avg_numcalls (
 dept_id IN INTEGER) RETURN NUMBER;
END analysis;

I don’t yet know how to calculate the average workload for a department, but I
know I will need it. I also need to perform some call maintenance, and according
to the documentation, I need to transfer a call to a new department:

CREATE OR REPLACE PACKAGE callmaint
IS
 PROCEDURE transfer (
 call_id IN INTEGER, dept_id IN INTEGER;
END callmaint;

Now, I can perform two pieces of “magic”:

• I can compile both specifications, since they don’t rely on any %TYPE decla-
rations to tables that don’t exist. That way, I can make sure their syntax is
valid.

• I can write other programs that use these programs, such as the load-balanc-
ing “assign a call” procedure, shown here:

CREATE OR REPLACE PROCEDURE assign_call
 (call_in IN INTEGER,
 oper_in IN INTEGER,
 dept_in IN INTEGER)
IS
BEGIN
 IF analysis.workload (oper_in) <
 analysis.avg_workload (dept_in)
 THEN
 callmaint.transfer (call_in, dept_in);
 END IF;
END assign_call;

Once again, I can verify that this code compiles (though I can’t run it). I can also
walk through this very readable code and check for logical errors. Allow me to
read it to you:

If the workload for this operator is less than the average workload of the
department, then transfer the call to that department.

Wait a minute, that doesn’t sound right. Shouldn’t I transfer the call to that oper-
ator who is underutilized? So I check with the users, get confirmation of their
mistake, and in minutes have corrected the callmaint specification and the
assign_call procedure. No need to fix the package body, though, since I held off
implementing it.

Benefits

By concentrating on the way that different programs interact with each other, the
resulting software is better behaved and more easily changed over time.

You spend less time fixing errors later in the development cycle, since you can
more easily identify problems before extensive coding has even begun.

,ch08.15305 Page 140 Friday, June 15, 2001 5:46 PM

Package Construction 141

Challenges

You might get nervous because you are holding off writing the “real” code, the
package body, while the clock ticks away. The time spent on this upfront design
verification will, however, save you hours of fixes and debugging later on. You
can also create the package body that contains “stub” subprograms, in which each
procedure or function contains the minimum amount of code needed to get the
package body to compile. The code can be run but, of course, it won’t actually do
anything (except perhaps allow you to trace execution and validate overall logical
flow).

PKG-04: Implement flexible, user-adjustable functionality
using package state toggles and related techniques.

As you rely more and more on packages to offer functionality to programmers on
your team or in your company, you want to design those packages to be flexible
and responsive to varying user needs.

You certainly don’t want programmers going into the package bodies and
changing implementations. You also don’t want them making copies of your code
and then producing their own variations.

Instead, add programs to the package specification that allow developers to
modify (within certain accepted pathways) the behavior of your package to fit
their varying requirements. These programs might turn on/off certain features
(“toggles”) or might set internal package values.

The most important feature of these programs is that they allow the package to
change its behavior without having to change the source code.

Example

I have decided to build a check-out package that allows librarians to check books
out of their collection. The default rule is that a person can have a maximum of 10
books checked out at any time. I can write my package to hard-code that rule as
follows:

CREATE OR REPLACE PACKAGE BODY checkout_pkg
IS
 c_max_allowed CONSTANT PLS_INTEGER := 10;

 FUNCTION can_check_out (
 borrower_id IN borrower.id%TYPE,
 isbn_in IN book.isn%TYPE)
 RETURN BOOLEAN
 IS
 l_checked_out PLS_INTEGER;
 l_book_is_available BOOLEAN;
 BEGIN
 l_checked_out :=
 checked_out_count (borrower_id);
 l_book_is_available :=
 book_available (isbn_id);
 RETURN (l_checked_out < c_max_allowed

,ch08.15305 Page 141 Friday, June 15, 2001 5:46 PM

142 Chapter 8: Package Construction

 AND l_book_is_available);
 END can_check_out;
 ...

But this approach doesn’t let a librarian override this rule, which he might need to
do with a professional researcher, for example. A much better approach is to offer,
in the specification, a way to change the checkout limits, within reasonable
boundaries. Here’s a modified package specification:

CREATE OR REPLACE PACKAGE BODY checkout_pkg
IS
 PROCEDURE set_checkout_limit (count_in IN PLS_INTEGER);
 FUNCTION checkout_limit RETURN PLS_INTEGER;

 FUNCTION can_check_out (
 borrower_id IN borrower.id%TYPE,
 isbn_in IN book.isn%TYPE)
 RETURN BOOLEAN;

The implementation of this override is simple: change the constant to a variable
and modify it from within set_checkout_limit:

CREATE OR REPLACE PACKAGE BODY checkout_pkg
IS
 g_max_allowed PLS_INTEGER := 10;

 PROCEDURE set_checkout_limit (
 count_in IN PLS_INTEGER) IS
 BEGIN
 g_max_allowed :=
 LEAST (GREATEST (count_in, 1), 20);
 END set_checkout_limit;

 FUNCTION checkout_limit RETURN PLS_INTEGER IS
 BEGIN
 RETURN g_max_allowed;
 END checkout_limit;

Another example of this technique is the on/off switch you build to implement a
“window” in a package (see PKG-05).

Benefits

The increased flexibility makes it more likely that the package is used and reused.
Code reuse generally improves the quality of your application and reduces the
resources needed to test and maintain the code base.

You can often layer toggles and other setting programs on top of an existing
package; it doesn’t all have to be figured out in advance.

Challenges

From a design standpoint, you can implement this flexibility either as a package-
level setting or by adding another parameter to your programs. Choose the
package-level approach if the setting or switch is a preference the user will want
to apply to the overall package behavior, and not just a single program. You can

,ch08.15305 Page 142 Friday, June 15, 2001 5:46 PM

Package Construction 143

even build a small GUI applet that allows a developer to easily change these
settings.

Resources

watch.pkg : This package, used to trace program execution, offers the ability to
switch output between the screen and database pipes.

PKG-05: Build trace “windows” into your packages using
standardized programs.

On the one hand, it’s very helpful to use packages to hide complexity. On the
other hand, it’s often the case that users can be greatly aided by being able to look
inside packages and watch what’s happening.

You can easily build a “read-only” window into a package. Users can open the
window when and if he wants to, watch what the package is doing (or at least
what the author of the package claims the package is doing), and then shut the
window when that information isn’t needed.

To build a window, you will need to:

• Add tracing code inside the package body.

• Supply an on-off switch in the specification so that users can open and close
the window.

Example

My overdue fines package allows a user to set the daily fine rate, as shown by this
partial package body:

CREATE OR REPLACE PACKAGE BODY overdue_pkg
IS
 g_daily_fine NUMBER := .10;

 PROCEDURE set_daily_fine (fine_in IN NUMBER) IS
 BEGIN
 g_daily_fine :=
 GREATEST (LEAST (fine_in, .25), .05);
 END set_daily_fine;
 ...

I now want to add a trace to this package so that a user of overdue_pkg can see
what the daily fine is being set to when her application runs. First, I add an on-off
switch to the package specification and body:

CREATE OR REPLACE PACKAGE overdue_pkg
IS
 ... other elements in package

 PROCEDURE trc;
 PROCEDURE notrc;
 FUNCTION tracing RETURN BOOLEAN;
END overdue_pkg;

,ch08.15305 Page 143 Friday, June 15, 2001 5:46 PM

144 Chapter 8: Package Construction

Then, I add my trace to the set_daily_ fine procedure:

PROCEDURE set_daily_fine (fine_in IN NUMBER)
IS
BEGIN
 IF tracing
 THEN
 watch.action ('set_daily_fine', fine_in);
 END IF;

 g_daily_fine :=
 GREATEST (LEAST (fine_in, .25), .05);
END set_daily_fine;

Rather than call DBMS_OUTPUT.PUT_LINE or even my enhanced pl procedure,
notice that I call watch.action. The watch package is a more robust tracing mecha-
nism. Among other features, it allows you to direct output to a database pipe,
bypassing the buffer limitations of DBMS_OUTPUT.

Now, when I want to watch what is happening inside my overdue package, I
simply turn on trace for my session before I run my application code:

SQL> exec overdue_pkg.trc
SQL> exec library_test

Benefits

This “read-only” window into a package can help you ensure that you’re using the
package properly or allow you to confirm that the data you’re passing into the
package is correct. Such windows increase your confidence in the package and
allow you to use it more effectively. The on-off switch for the window is based on
the “get and set” technique discussed in DAT-15.

Windows are easy to add to your package after you have written the base code.
Just add an on-off switch and put an IF statement inside the appropriate module.

Challenges

If you add trace calls, add them comprehensively, taking into account the perspec-
tive and needs of the user. Looking through a smoky window may be more
confusing than not being able to see at all.

It’s worth coming up with a plan for where and when you will insert trace calls in
your code. Take into account possible impact on performance and readability.
You may also find yourself adding trace logic iteratively as you work on different
sections of code, in order to watch several computations or logic paths.

Resources

overdue.pkg : The overdue package

watch.pkg : A watch package used to perform tracing

,ch08.15305 Page 144 Friday, June 15, 2001 5:46 PM

Package Construction 145

PKG-06: Use package body persistent data structures to
cache and optimize data-driven processing.

When you declare data inside a package but not within any individual procedure
or function in the package, that data persists for your entire session.* A package-
level collection, for example, retains its values (say, 1000 rows of data) until you
DELETE one or more rows from the collection, close your connection, or recom-
pile the package.

This data persistence means you can use package data as a “local” cache—local to
that single session/user. The System Global Area (SGA) acts as a cache for all users
and greatly improves overall database performance. Your own session-specific
cache can improve your application performance. You can cache at multiple
levels:

• A single value, such as the name of the current user

• A record of values, such as the default configuration for the current user

• An entire collection or list of values, such as the result set of a query that
must be processed multiple times

Regardless of the complexity of data, the conditions and steps for caching are
similar:

• The data must be static for the duration of the session. It’s possible to come
up with ways to update the cache, but such efforts are likely to cancel out
performance gains.

• You need to declare the data structures inside the package body so that you
can manage their contents and integrity (see DAT-15).

A Robust Tracing Mechanism
When watching values inside a loop, many values may be generated
(hundreds of thousands if you loop that many times). Conditional logic can
be used to only display values when specific criteria are met. For example,
while processing tens of thousands of claims, we wanted to trace only
specific claims. So I built a package that allowed us to store those claim
numbers in a packaged index-by table (before we actually ran the claims
processing program). If any of those claims came up, the trace mechanism
was enabled only for those claims. A global debug flag turned debugging on
or off in general, and a local flag turned it on or off for just those claims pre-
populated in the index-by table (but only if the global debug flag was
turned on). A function provided the interface to the index-by table.

 —Dan Clamage

* You can insert the PRAGMA SERIALLY_REUSABLE statement into your package if you don’t
want package level data to be persistent.

,ch08.15305 Page 145 Friday, June 15, 2001 5:46 PM

146 Chapter 8: Package Construction

• You also need to build access programs to those data structures so that even
inside the package body, you manipulate the cache through a well-defined
interface.

Example

For reasons of space, I will show the simplest package-based caching mechanism
here. See the “Resources” section for more complex sample packages.

Consider the USER function. It returns the name of the currently connected user.
This value never changes during your session, right? The USER function in PL/SQL
is implemented as follows (as defined in the STANDARD package, and with less-
than-ideal formatting):

function USER return varchar2 is
c varchar2(255);
begin
 select user into c from sys.dual;
 return c;
end;

So every time you call USER in PL/SQL, it runs a query. That is quite unnecessary,
and you can use caching to ensure that this query is run just once per session:

CREATE OR REPLACE PACKAGE thisuser
IS
 name CONSTANT VARCHAR2(30) := USER;
END thisuser;
/

Now you can reference the value of USER without multiple calls to USER, like this:

FOR user_rec IN user_cur
LOOP
 IF user_rec.user_name = thisuser.name
 THEN
 ...

See the “Resources” section for a reference to the thisuser package; there you will
find a script you can run to test the performance advantage of thisuser over direct,
repetitive calls to USER.

Benefits

This technique improves application performance by avoiding unnecessary and
(relatively speaking) slow data access through the SGA.

It’s especially handy when you execute long-running batch processes that must
perform multiple passes through large result sets. Load up the query results in a
collection of records, and then you have bidirectional, random access to the data
for your batch process.

Challenges

Each session has its own copy of package data, and Oracle uses real memory for
this session data. So if you plan to cache data, be aware of the volume of data and
the number of users who will cache it.

,ch08.15305 Page 146 Friday, June 15, 2001 5:46 PM

Package Construction 147

Resources

init.pkg and init.tst : An example package and script to compare the performance
of caching a record of data.

emplu.pkg and emplu.tst : An example package and script to compare the perfor-
mance of caching multiple rows of data.

PKG-07: Insulate applications from Oracle version sensitivity
using version-specific implementations.

Many organizations need to write code that will run on different Oracle versions
(such as Oracle 7.3 and Oracle 8.1). There are two approaches you might follow
in this situation:

• Use “lowest common denominator” features that are available in all versions.

• Use the best and most appropriate features available in each version.

If you take the first approach, you can maintain just one version of code, but you
will also sacrifice significant functionality and performance advantages. If you take
the second approach, you can avoid maintaining multiple copies of the code by
(a) using packages to isolate those differences, and (b) relying on the separation
of package specification and body to “execute around” compilation errors.

Here are the basic steps you need to take to achieve this effect:

1. Extract all version-specific logic into separate package bodies, separated by
database version.

2. Create a function that returns the current Oracle version.

3. Modify or create the main (public) package to call each of the version-specific
programs, based on the current Oracle version.

4. Compile and use the code in each different database version.

This last point is, in a way, the most interesting. You see, at least one of your
package bodies will actually fail to compile—and you won’t care! The package
body for Oracle8i, for example, doesn’t compile in Oracle 7.3. But that doesn’t

Put USER in a Package Variable
We used the USER function to differentiate report data being generated by
each user, so two people could run the same report with different criteria
and not stomp on each other. We used function USER everywhere—in
hundreds of packages. Then one day, when the DBA was figuring out how
to migrate our current platform to AIX, he realized that the USER value
would have to be replaced with v$session.osuser, for network-related
reasons. We had to go back and fix a lot of packages. If only we had stored
the USER value in a package variable, we would just have needed to change
it in one place.

 —Dan Clamage

,ch08.15305 Page 147 Friday, June 15, 2001 5:46 PM

148 Chapter 8: Package Construction

matter at all, because (a) the package specification compiles, and that’s all the
outer package needs for it to compile, and (b) the code in the body that didn’t
compile will never be called.

The following example demonstrates this in a simple and easy to understand way.

Example

Suppose I need to build an error-logging package that will be used in Oracle 7.3
and Oracle8i (8.1). In Oracle8i, I want to take advantage of autonomous transac-
tions, allowing the log entry to be immediately saved to the database without
affecting the main transaction. First, I create the specifications for my generic
logging package and a separate package for my Oracle8i-specific code:

CREATE OR REPLACE PACKAGE log_pkg
IS
 PROCEDURE putline (
 code_in IN INTEGER, text_in IN VARCHAR2);
END log_pkg;
/

CREATE OR REPLACE PACKAGE log81_pkg
IS
 PROCEDURE putline (
 code_in IN INTEGER, text_in IN VARCHAR2);
END log81_pkg;
/

My logging package body determines the Oracle version with a query against the
PRODUCT_COMPONENT_VERSION data dictionary view and stores it in a global
package variable:

CREATE OR REPLACE PACKAGE BODY log_pkg
IS
 g_version VARCHAR2 (100);

 FUNCTION oraversion RETURN VARCHAR2
 IS
 retval VARCHAR2 (100);
 BEGIN
 SELECT SUBSTR (version, 1, 3)
 INTO retval
 FROM product_component_version
 WHERE UPPER (product) LIKE 'ORACLE7%'
 OR UPPER (product) LIKE 'PERSONAL ORACLE%'
 OR UPPER (product) LIKE 'ORACLE8%';
 RETURN retval;
 END oraversion;

I then implement the putline procedure using conditional logic either to call the
Oracle8i logging program or to do the “normal” INSERT (the best I can do in
Oracle7 and Oracle8):

 PROCEDURE putline (
 code_in IN INTEGER, text_in IN VARCHAR2)
 IS
 BEGIN

,ch08.15305 Page 148 Friday, June 15, 2001 5:46 PM

Package Construction 149

 IF g_version = '8.1'
 THEN
 log81_pkg.putline (code_in, text_in);
 ELSE
 INSERT INTO logtab
 VALUES (code_in, text_in, SYSDATE, USER);
 END IF;
 END putline;
BEGIN
 -- Populate the version in the init. section.
 g_version := oraversion;
END log_pkg;
/

This package body compiles because the log81_pkg specification has already been
defined; the package body isn’t needed to get this far. Now let’s try the package
body for Oracle8i processing:

CREATE OR REPLACE PACKAGE BODY log81_pkg
IS
 PROCEDURE putline (
 code_in IN INTEGER, text_in IN VARCHAR2)
 IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 BEGIN
 INSERT INTO logtab
 VALUES (code_in, text_in, SYSDATE, USER);
 COMMIT;
 EXCEPTION
 WHEN OTHERS
 THEN
 ROLLBACK;
 END putline;
END log81_pkg;
/

This package body doesn’t compile in an Oracle7 environment, but the log_
pkg.put_line procedure still works because log81_pkg.put_line is never called.
The log.tst script demonstrates this behavior. For those of us running Oracle8i, the
second half of the script “mimics” an Oracle7 environment by hard-coding the
version and causing compile errors in the log81_pkg body.

You might also consider using the DBMS_SQL package (available
in all current and future versions of the Oracle RDBMS) to execute
a PL/SQL block that’s constructed at runtime. The package com-
piles because the compiler is ignorant of version-specific depen-
dencies hidden in the text string.

Benefits

You can build and maintain one version of your code that works across multiple
versions of the Oracle database.

,ch08.15305 Page 149 Friday, June 15, 2001 5:46 PM

150 Chapter 8: Package Construction

Challenges

Make sure that the function retrieving the Oracle database version works on your
instance (I have confirmed the logic for Oracle7, Oracle8, and Oracle8i through
8.1.6).

You will sometimes want to use version-specific features in the package specifica-
tion, such as Oracle8i ’s NOCOPY parameter hint, the DETERMINISTIC pragma,
and the AUTHID clause. This technique will then not work.

Resources

log.pkg and log.tst : The log package and test script that demonstrate the tech-
niques you need for this best practice.

PKG-08: Avoid bloating package code with unnecessary but
easy-to-build modules.

This best practice definitely applies to the author of this book. Once you get
started building packages, especially packages that provide an interface to under-
lying functionality, it’s so, so easy to get excited about all the possibilities, all the
different programs that can and should be a part of that interface. Why not add a
function that calculates X, or a procedure that displays Y?

The result can be best characterized by a rephrasing of that oft-repeated riddle:

If you write a program and no one uses it, does that program really exist?

And it’s not just a matter of wasted effort. By loading up a package with programs
no one necessarily wants or needs, you make it harder for anyone to find the
programs that they actually do want or need. You are better off taking a mini-
malist approach to building your packages: build only what is needed at this point
in time. Implement those requirements in the simplest, most direct manner
possible (based on best practices, of course).

Example

Gosh, there are actually a number of examples to choose from in my own
toolbox. All right, how about the PLVgen package of PL/Vision? This package is a
handy code generator. You can, for example, spit out function templates. You can
direct the output to the screen or a file. But wait! That’s not all. You can also send
the generated code to a database pipe or even a “PL/SQL table” (now called an
index-by table or collection). Of course, if you write the code to a PL/SQL table,
you then need to extract it from that collection. It’s the same with a database pipe.
So the PLVgen specification ended up containing (among many other programs)
the following:

CREATE OR REPLACE PACKAGE PLVgen
IS
 -- Direct output to a screen, file, database table, etc.

 PROCEDURE toscreen;

 PROCEDURE tofile (file IN VARCHAR2 := c_file);

,ch08.15305 Page 150 Friday, June 15, 2001 5:46 PM

Package Construction 151

 PROCEDURE todbtab (tab IN VARCHAR2 := c_dbtab);

 -- Pipe related functionality
 PROCEDURE topipe (pipe IN VARCHAR2 := c_pipe);
 PROCEDURE pipe2file (
 pipe IN VARCHAR2 := c_pipe,
 file IN VARCHAR2 := c_file);
 PROCEDURE pipe2dbtab (
 pipe IN VARCHAR2 := c_pipe,
 tab IN VARCHAR2 := c_dbtab);

 -- PL/SQL table related functionality
 PROCEDURE topstab;
 PROCEDURE pstab2file (file IN VARCHAR2 := c_file);
 PROCEDURE pstab2dbtab (tab IN VARCHAR2 := c_dbtab);

 ...
END PLVgen;

From a purist’s point of view, all this makes perfect sense. I have a strong feeling,
however, that the PLVgen.pstab2dbtab program has never been (and will never
be) used.

Benefits

You don’t waste time building code no one will use.

Developers can much more easily find the functionality they actually need.

Challenges

This best practice is a sobering reminder that we are, for the most part, engaged in
software development not as an art, but as a means of employment. Flights of
fancy don’t have much of a place in our application-development projects.

PKG-09: Simplify and encourage module usage using
overloading to widen calling options.

Overloading (also known as static polymorphism in the world of object-oriented
languages) is the ability to create two or more programs with the same name.
While you can do this in the declaration section of any PL/SQL block, it’s most
useful and common in package specifications.

The primary reason to overload programs in your package is to transfer the “need
to know” about how to use your functionality from the user to the package itself.
You anticipate the different ways that developers will want to use the packaged
feature and then offer matching variations of the “same” program.

Example

DBMS_OUTPUT.PUT_LINE (“put a line on the screen”) is one of the most
commonly used built-in procedures in the Oracle toolbox. It’s overloaded for three
types of data, as shown in the DBMS_OUTPUT specification.

,ch08.15305 Page 151 Friday, June 15, 2001 5:46 PM

152 Chapter 8: Package Construction

PROCEDURE DBMS_OUTPUT.PUT_LINE (A VARCHAR2);
PROCEDURE DBMS_OUTPUT.PUT_LINE (A NUMBER);
PROCEDURE DBMS_OUTPUT.PUT_LINE (A DATE);

By overloading this way, Oracle allows us to pass a string, a number, or a date to
this procedure, and it automatically “does the right thing.” Ironically, Oracle could
have provided just a single VARCHAR2 implementation, and the PL/SQL runtime
engine would have implicitly converted numbers and dates to strings for us. What
Oracle didn’t offer was an overloading for DBMS_OUTPUT.PUT_LINE that
supports the Boolean datatype, resulting in this kind of error:

SQL> l
 1 DECLARE
 2 l_book_is_overdue BOOLEAN;
 3 BEGIN
 4 DBMS_OUTPUT.PUT_LINE (l_book_is_overdue);
 5 END;
 6 /
ERROR
PLS-00306: wrong number or types of arguments in call to 'PUT_LINE'

The result is that developers often write code like this (over and over again):

BEGIN
 IF l_book_is_overdue
 THEN
 DBMS_OUTPUT.PUT_LINE ('TRUE');
 ELSIF NOT l_book_is_overdue
 DBMS_OUTPUT.PUT_LINE ('FALSE');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('NULL');
 END IF;

Yuck! The point here is that it’s important not only to overload programs but also
to overload properly and sufficiently. You need to analyze and anticipate common
developer requirements and build packages to meet those requirements. Oracle
doesn’t have the best track record in this regard, but you certainly can take the
time and make the effort in your own programs.

Benefits

When you overload properly, developers take your code totally for granted. They
have no idea about all the work you put into your various implementations. They
just know that they call “that program” and it does what’s needed, regardless of
variations in parameter lists.

Challenges

Don’t build your code in the abstract. Think about how the code needs to be
used. Try out the usages yourself. Be ready to add to your overloadings in
response to user feedback.

There are some technical limitations to overloading, for example, when combined
with default parameters or when used with implicit type conversions, or even
when used in different client environments (e.g., Microsoft’s Active Data Objects,
or ADO, doesn’t recognize overloading and only “sees” the first declaration it
comes across).

,ch08.15305 Page 152 Friday, June 15, 2001 5:46 PM

Package Construction 153

In situations where there are many overloadings, you might consider adding a
trace so that users of the package can easily confirm which of the overloadings are
being used.

Resources

p.sps and p.spb : PL/Vision offers a substitute for DBMS_OUTPUT.PUT_LINE called
the p.l procedure. This procedure is overloaded 18 times, allowing a devel-
oper to display, for example, a string and a number, a Boolean, two numbers,
and so on.

PKG-10: Consolidate the implementation of related
overloaded modules.

In most cases, when you build overloaded programs, each program performs a
similar operation, with variations that are usually related to different combinations
of parameters. If you aren’t careful about how you implement these overloadings,
you will end up with a mess of code that’s difficult to maintain and enhance.

The most important step you can take is to isolate behavior/features common to
all overloadings and then move that common code into a separate, usually private
program. All the overloadings then call that internal program.

You should also take care to organize the overloaded headers contiguously in the
package specification so that they are easily identified.

Example

Suppose that I have decided to build an encapsulation package around the book
table. Developers will not write an INSERT statement to add a book; they will call
an insert procedure. I can think of several different ways to perform that insert:

• Pass an individual value for each column.

• Pass a record containing a value for each column.

• Pass a collection of multiple records of book data.

Here’s the package specification corresponding to these approaches:

CREATE OR REPLACE PACKAGE te_book
IS
 TYPE book_tt IS TABLE OF book%ROWTYPE;

 PROCEDURE ins (
 isbn_in IN book.isbn%TYPE,
 title_in IN book.title%TYPE DEFAULT NULL,
 summary_in IN book.summary%TYPE DEFAULT NULL,
 author_in IN book.author%TYPE DEFAULT NULL,
 date_published_in IN book.date_published%TYPE DEFAULT NULL,
 page_count_in IN book.page_count%TYPE DEFAULT NULL);

 --// Record-based insert //--
 PROCEDURE ins (rec_in IN book%ROWTYPE);

,ch08.15305 Page 153 Friday, June 15, 2001 5:46 PM

154 Chapter 8: Package Construction

 --// Collection-based insert //--
 PROCEDURE ins (coll_in IN book_tt);
END te_book;

Here are three different programs with the same name, all with very different
parameter lists. Now let’s look at the package body: First, I define an “internal”
insert procedure that performs the actual INSERT and provides standardized error
handling and validation:

CREATE OR REPLACE PACKAGE BODY te_book
IS
 PROCEDURE internal_ins (
 isbn_in IN book.isbn%TYPE,
 title_in IN book.title%TYPE DEFAULT NULL,
 summary_in IN book.summary%TYPE DEFAULT NULL,
 author_in IN book.author%TYPE DEFAULT NULL,
 date_published_in IN book.date_published%TYPE DEFAULT NULL,
 page_count_in IN book.page_count%TYPE DEFAULT NULL
)
 IS
 BEGIN
 validate_constraints;
 INSERT INTO book (
 isbn, title, summary, author, date_published, page_count)
 VALUES (
 isbn_in, title_in, summary_in, author_in,
 date_published_in, page_count_in);
 EXCEPTION
 WHEN OTHERS
 THEN
 err.log;
 END internal_ins;

As for my various insert procedures, I implement them either by using the
internal_ins procedure directly or by calling another insert procedure, whichever is
most intuitive:

 PROCEDURE ins (
 title_in IN book.title%TYPE DEFAULT NULL,
 summary_in IN book.summary%TYPE DEFAULT NULL,
 author_in IN book.author%TYPE DEFAULT NULL,
 date_published_in IN book.date_published%TYPE DEFAULT NULL,
 page_count_in IN book.page_count%TYPE DEFAULT NULL,
 isbn_inout IN OUT book.isbn%TYPE)
 IS
 v_pky INTEGER := new_isbn_number;
 BEGIN
 internal_ins (v_pky,
 title_in,
 summary_in,
 author_in,
 date_published_in,
 page_count_in
);
 isbn_inout := v_pky
 END;

,ch08.15305 Page 154 Friday, June 15, 2001 5:46 PM

Package Construction 155

 PROCEDURE ins (rec_in IN book%ROWTYPE) IS
 BEGIN
 internal_ins (rec_in.isbn,
 rec_in.title,
 rec_in.summary,
 rec_in.author,
 rec_in.date_published,
 rec_in.page_count
);
 END;

 PROCEDURE ins (coll_in IN book_tt)
 IS
 indx PLS_INTEGER := coll_in.FIRST;
 BEGIN
 LOOP
 EXIT WHEN indx IS NULL;

 -- Just use the record-based version
 ins (coll_in(indx));
 indx := coll_in.NEXT (indx);
 END LOOP;
 END;
END;

Benefits

When you need to fix or change some aspect of the implementation, you go to
one place in your package body. Once the change is made, you are then sure that
it will affect all overloadings.

Challenges

Develop the discipline required to take the time to identify common areas of func-
tionality and isolate them into their own programs.

Resources

te_book.pkg : The table encapsulation package for the book table (well, just the
INSERT functionality of such a package).

PKG-11: Separate package specifications and bodies into
different source code files.

Don’t combine the specification and body of a package in the same file. Instead,
store them in their own files and then, in your installation script for your product,
compile all specifications first, followed by the package bodies. By taking this
approach, you will find it easier to install and maintain your code base.

Over time, it’s likely that your package specification will stabilize, and most
changes will take place in the package body. All references to elements in a
package are resolved with the specification. If the specification is recompiled, all
dependent objects are marked INVALID and must be recompiled. By putting the
body in its own file, you can change and recompile it without affecting the status
of any other programs.

,ch08.15305 Page 155 Friday, June 15, 2001 5:46 PM

156 Chapter 8: Package Construction

Example

See the various .pks and corresponding .pkb files provided on the Oracle PL/SQL
Best Practices web site.

You will also find a number of .pkg files on the site. I admit that these files violate
this best practice. I decided to take this approach because they are small, self-
contained packages, designed to be deployed easily in your own application
environment.

PL/Vision is an example of a much more complex base of code. For this library, all
package specifications and bodies are stored in their own files.

Benefits

You can maintain and recompile packages without causing a “domino effect” that
invalidates many other (unchanged) programs.

Your code will install more cleanly, since all references to packaged functionality
in package bodies and standalone programs are resolved by specifications that
have already been compiled.

Challenges

Pick, and stick with, a consistent, suitable extension for package specification and
body files. Most PL/SQL IDEs can be taught to recognize specific suffixes.

PKG-12: Use a standard format for packages that include
comment headers for each type of element defined in the
package.

Packages are likely to be the largest, most complex code elements of your applica-
tion. The internal structure of a package (both the specification and the body) is
usually composed of many different types of elements, including variables, user-
defined types, functions, and procedures.

Your standard package format should help you organize the elements of a
package, minimize the need for forward declarations, and make it easier for you to
rapidly find constructs. Make the standard format available for developers either in
a template file or by generating it upon command.

Example

Here’s a template for a package body (see the “Resources” section for where to
find this code):

CREATE OR REPLACE PACKAGE BODY name
IS
/*
PUT YOUR PACKAGE HEADER HERE
*/

/* Constants */

/* Variables */

,ch08.15305 Page 156 Friday, June 15, 2001 5:46 PM

Package Construction 157

/* Exceptions */

/* Types (records, collections, cursor variables) */

/* Private Programs */

/* Public Programs */

END name;

Benefits

If everyone in your development team builds packages the same way, it will be
easier to maintain the code base.

By separating code elements into distinct sections identified by headers, you can
quickly find the desired code.

Resources

template.pks and template.pkb : Template files, one for the package specification
and one for the body.

PLVgen: Use this package of the PL/Vision library to generate a package template,
either to the screen or directly to a file.

,ch08.15305 Page 157 Friday, June 15, 2001 5:46 PM

158

Chapter9

9
Built-in Packages 9.

Oracle provides a wide-ranging and ever-increasing set of built-in pack-
ages—packages that are installed into the database upon installation and
that are officially supported by Oracle. These packages usually give you
access to technology and features that would otherwise be difficult, if not
impossible, to implement in native PL/SQL.

You should become familiar with the built-in packages; the Oracle
Built-in Packages book and the Oracle HTML documentation are
two excellent sources for this information.

You must, however, also be careful about how you implement programs
based on these packages. In many cases, the packages are somewhat hard
to use and understand; hence, you should hide that complexity so that
your resulting code is easy to manage over time. I recommend you follow
these general guidelines:

Encapsulate access to the built-in functionality
I often find it very worthwhile to build my own packages on top of
the Oracle packages. I can then enhance the base package’s function-
ality. It also is then easier to use that package in a consistent fashion
throughout my application.

Read the fine print—and run your own tests—on any built-in packaged
functionality

Don’t assume, just because Oracle documentation says that a program
will do X, that it will, in fact, do X in your environment and your

,ch09.15429 Page 158 Friday, June 15, 2001 5:46 PM

DBMS_OUTPUT 159

version of Oracle. DBMS_UTILITY contains several programs, for
example, that don’t work as advertised (COMPILE_SCHEMA, COMMA_
TO_ TABLE, TABLE_TO_COMMA).*

DBMS_OUTPUT
The DBMS_OUTPUT built-in package allows you to display output as your PL/SQL
program executes.

BIP-01: Avoid using the DBMS_OUTPUT.PUT_LINE procedure
directly.

I am very glad that Oracle provided DBMS_OUTPUT in Version 2 of PL/SQL.
Before that, it was difficult to debug code, because there was no easy way to trace
program execution to the screen. However, the implementation of DBMS_
OUTPUT leaves much to be desired. Here are my complaints:

1. It’s a productivity disaster. You have to type 20 characters just to ask PL/SQL
to show you something.

2. The overloading is inadequate. You can pass only single strings, dates, or
numbers. You can’t pass it a Boolean value, nor can you pass it multiple val-
ues to be displayed (without doing the concatenation yourself).

3. If you try to display a string with more than 255 characters, you get one of
two errors: ORA-20000 (a.k.a. ORU-10028 line length overflow) or ORA-06502
(numeric or value error). I don’t know about you, but a whole lot of my
strings are longer than 255 bytes.

4. Your program can display a maximum of 1 million lines—and it can be lots
less if you forget to specify a high number in your SET SERVEROUTPUT com-
mand in SQL*Plus (resulting in an out-of-buffer error).

5. You don’t see anything on your screen until your PL/SQL program has fin-
ished executing—whether that takes five minutes or five hours.

When you are faced with a utility such as DBMS_OUTPUT that is simultaneously
necessary and faulty, you should say out loud (it will make you feel better):

I am fed up and I am not going to take it anymore!

Specifically, set a rule that you will never call DBMS_OUTPUT.PUT_LINE directly
but instead build (or use) a layer of code over DBMS_OUTPUT.PUT_LINE that
corrects most, if not all, the previously listed problems.

* COMPILE_SCHEMA is supposed to recompile all invalid objects. Sometimes it works, some-
times it does nothing, and sometimes it invalidates other objects as it recompiles currently
invalid objects. COMMA_TO_TABLE and TABLE_TO_COMMA work with comma-delimited
lists, but the elements in the list have to be valid PL/SQL identifiers. If you pass “1,2,3” to
COMMA_TO_TABLE, for example, Oracle raises an exception.

,ch09.15429 Page 159 Friday, June 15, 2001 5:46 PM

160 Chapter 9: Built-in Packages

Example

You can take a number of different approaches to encapsulating and improving
upon DBMS_OUTPUT.PUT_LINE. I offer implementations for each approach in the
“Resources” section. They are:

• One simple procedure to display strings, dates, and numbers, and a second
procedure to display Boolean values—taking care of problems 1, 2 (partly),
and 3.

• A package replacement for DBMS_OUTPUT that offers a variety of overload-
ings of datatypes for display, such as a Boolean, a string and a Boolean, two
numbers, etc. This implementation takes care of problems 1 through 4 (you
can avoid buffer overflow problems when a small buffer size has been set).

• A more general trace package that hides DBMS_OUTPUT, but also allows the
user to redirect the “target” of the output. If, for example, you know that you
will be generating 5 MB of information, you might want to send output to a
file. If your program runs for two hours, you might want to send output to a
database pipe, so you can “watch” from another session.

Benefits

You can avoid most, if not all, the nuisance problems with DBMS_OUTPUT, thus
improving productivity and debugging flexibility.

Challenges

Select a standard approach for generating output for your application, then find or
build the right implementation. You can check to see if people are using the
substitute by querying the ALL_SOURCE data dictionary view to check for
instances of DBMS_OUTPUT.

Resources

pl.sp and bpl.sp : Standalone procedure implementations; these are used through-
out the book in place of DBMS_OUTPUT.PUT_LINE.

p : This package, part of PL/Vision, provides a direct package encapsulation of
DBMS_OUTPUT.

watch.pkg : A generalized trace package with the ability to send output to a screen
or database pipe.

UTL_FILE
The UTL_FILE built-in package allows you to read and write sequential lines from
a file on the same computer as the database instance from which you run your
program.

BIP-02: Improve the functionality and error handling of
UTL_FILE by using a comprehensive encapsulation package.

UTL_FILE offers only the most primitive file I/O capabilities and leaves much to be
desired. Here’s a list of some of the things you can’t do:

,ch09.15429 Page 160 Friday, June 15, 2001 5:46 PM

UTL_FILE 161

• Delete a file

• Obtain or change the privileges on a file

• Read or write a random line in a file (sequential operations only)

• Obtain information about directories (files in a directory, whether or not a
name indicates a file or a directory, etc.)

• Define a path for finding and opening files

In addition, the way that UTL_FILE raises exceptions can make it difficult to iden-
tify and resolve file-handling errors (see BIP-04 for details on this issue).

Ah well, we’ve just got to make do with what Oracle gives us, right? Wrong! You
should instead create your own (or take advantage of someone else’s) package
that sits on top of UTL_FILE and enhances its functionality. If you don’t want to go
to the trouble of implementing an entire “replacement” package, you can also
create alternatives to individual programs, as I demonstrate in BIP-05.

Example

You can find one example of an encapsulation for UTL_FILE in the RevealNet
Active PL/SQL Knowledge Base. This package, called PLVfile (PL/Vision file
management), is implemented entirely in PL/SQL and so inherits some of the limi-
tations of UTL_FILE. It is, however, generally easier to use and offers some added
functionality, such as support for paths.

Moreover, if you are using Oracle8i (or above), you can now also take advantage
of Java to greatly expand the possibilities of file I/O from within PL/SQL. I have
created a working prototype of such an implementation. It’s composed of two
code elements:

The JFile class
A Java class that exposes underlying Java File methods in ways that can be
called from PL/SQL.

The xfile package
A PL/SQL package that calls JFile methods, thereby allowing PL/SQL develop-
ers to do just about anything they need to do with files and directories—all
from within PL/SQL.

The xfile specification is a superset of the UTL_FILE specification (except that it
doesn’t declare a record structure corresponding to UTL_FILE.FILE_TYPE). So
instead of calling UTL_FILE.GET_LINE, you would call xfile.get_line. But xfile also
offers much more. For example, with xfile you can delete a file, as shown:

did_it_work := xfile.delete ('c:\temp\garbage.dat');

You can also delete all the .tmp files in a directory:

xfile.delete ('/tmp/apps', '%.tmp');

You can also make a directory, change privileges, obtain the list of files in a direc-
tory, find out if you can read to or write from a file, and so on. As you will see if
you look in the JFile code, the Java required to take these actions is absolutely
minimal. The work required in PL/SQL to leverage the functionality is also light.

,ch09.15429 Page 161 Friday, June 15, 2001 5:46 PM

162 Chapter 9: Built-in Packages

Benefits

You aren’t constrained by the weak implementation of file I/O offered by
UTL_FILE.

Challenges

Try to design the API of your encapsulation package to be as similar as possible to
UTL_FILE (at least where there is overlap). This will make it easier for developers
to “switch over”—perhaps involving just a careful global search and replace of
“UTL_FILE” for “xfile,” for example.

Some constraints currently can’t be circumvented, such as the need to stop and
restart the database to make a particular path available for file I/O (if your encap-
sulation relies on UTL_FILE and not Java).

Resources

PLVfile : RevealNet’s Active PL/SQL Knowledge Base offers this package, which
enhances the functionality of the underlying UTL-FILE built-in package. Visit
the PL/SQL Pipeline Archives as described in the Preface.

JFile.java and xfile.pkg : The Java-enhanced file I/O package for PL/SQL, along
with the required Java class.

BIP-03: Validate the setup of UTL_FILE with simple tests.

The hardest part about using UTL_FILE is to get it up and running. You must add
one or more UTL_FILE_DIR entries in your initialization parameter file, and then
restart your database to have those changes take effect.

The UTL_FILE_DIR parameter specifies those directories in which UTL_FILE can
operate. The format of the parameter for file access in the INIT.ORA file is:

utl_file_dir = directory

Include a parameter for UTL_FILE_DIR for each directory you want to make acces-
sible for UTL_FILE operations. The following entries, for example, enable four
different directories in Unix:

utl_file_dir = /tmp
utl_file_dir = /ora_apps/hr/time_reporting
utl_file_dir = /ora_apps/hr/time_reporting/log
utl_file_dir = /users/test_area

To bypass server security and allow read/write access to all directories, you can
use this special syntax:

utl_file_dir = *

Don’t use this option on production systems. In a development system, this entry
certainly makes it easier for developers to get up and running on UTL_FILE and
test their code (but it also allows them to write “Long Live PL/SQL!” on top of your
database control files!). You should, however, allow access only to a few specific
directories when you move the application to production.

,ch09.15429 Page 162 Friday, June 15, 2001 5:46 PM

UTL_FILE 163

Here are some observations on working with and setting up accessible directories
with UTL_FILE:

• Access isn’t recursive through subdirectories. If the following lines were in
your INIT.ORA file, for example:

utl_file_dir = c:\group\dev1
utl_file_dir = c:\group\prod\oe
utl_file_dir = c:\group\prod\ar

then you couldn’t open a file in the c:\group\prod\oe\reports subdirectory.

• Don’t include the following entry in Unix systems:

utl_file_dir = .

This allows you to read/write on the current directory in the operating system.

• Don’t enclose the directory names within single or double quotes.

• In the Unix environment, a file created by UTL_FILE.FOPEN has, as its owner,
the shadow process running the Oracle instance. This is usually the oracle
owner. If you try to access these files outside of UTL_FILE, you need to have
the correct privileges (or be logged in as oracle) to access or change these
files.

• You shouldn’t end your directory name with a delimiter, such as the forward
slash in Unix. The following specification of a directory will result in prob-
lems when you’re trying to read from or write to the directory:

utl_file_dir = /tmp/orafiles/ -- WILL NOT WORK!

After restarting your database with your UTL_FILE_DIR parameter(s), test your
ability to read from and write to your desired directories, using simple test scripts
(see the “Resources” section). Once you have successfully read from and written to
a file, you are ready to use UTL_FILE in your application.

Example

Here’s a simple SQL*Plus script that tests UTL_FILE’s ability to read from and write
to a file:

DECLARE
 fid UTL_FILE.FILE_TYPE;
 v VARCHAR2(32767);
BEGIN
 /* Change the directory name to one to which you at least
 || THINK you have read/write access.
 */
 fid := UTL_FILE.FOPEN ('e:\demo', '&1', 'R');
 UTL_FILE.GET_LINE (fid, v);
 pl (v);
 UTL_FILE.FCLOSE (fid);

 fid := UTL_FILE.FOPEN ('e:\demo', '&2', 'W');
 UTL_FILE.PUT_LINE (fid, v);
 UTL_FILE.FCLOSE (fid);
END;

See “Resources” for the file containing this logic (plus the recommended excep-
tion handling).

,ch09.15429 Page 163 Friday, June 15, 2001 5:46 PM

164 Chapter 9: Built-in Packages

Benefits

You will save yourself many hours of frustrated debugging by taking these simple
steps and following the basic recommendations for setting up the UTL_FILE_DIR
parameter(s).

Resources

utlfile.tst : A simple script to test the ability to read and write files.

BIP-04: Handle expected and named exceptions when
performing file I/O.

You may encounter a number of difficulties (and therefore exceptions) when
working with operating system files. The UTL_FILE package itself offers a set of
named exceptions that are specific to the package, such as UTL_FILE.INVALID_
OPERATION. (The UTL_FILE.GET_LINE procedure can also raise the standard
NO_DATA_FOUND exception.) These named exceptions are all user-defined
exceptions, which means that the SQLCODE is the same for all the exceptions: +1.
For this reason, you must handle UTL_FILE exceptions by name, or you won’t be
able to determine which error was raised.

Every block of code that works with UTL_FILE should therefore have an excep-
tion section that: (a) traps each UTL_FILE exception by name, (b) “translates” the
exception into a string that can be displayed so you can tell which error was
raised, and (c) closes any opened files.

Example

The best way to do this is to build a “local procedure” that displays error informa-
tion and closes the file, as shown here:

IS
 fid UTL_FILE.FILE_TYPE;

 PROCEDURE recNgo (str IN VARCHAR2)
 IS
 BEGIN
 pl ('UTL_FILE error: ' || str);
 UTL_FILE.FCLOSE (fid);
 END;
BEGIN
 ... your code
EXCEPTION
 WHEN UTL_FILE.INVALID_PATH
 THEN recNgo ('invalid_path');
 WHEN UTL_FILE.INVALID_MODE
 THEN recNgo ('invalid_mode');
 WHEN UTL_FILE.INVALID_FILEHANDLE
 THEN recNgo ('invalid_filehandle');
 WHEN UTL_FILE.INVALID_OPERATION
 THEN recNgo ('invalid_operation');
 WHEN UTL_FILE.READ_ERROR
 THEN recNgo ('read_error');
 WHEN UTL_FILE.WRITE_ERROR

,ch09.15429 Page 164 Friday, June 15, 2001 5:46 PM

UTL_FILE 165

 THEN recNgo ('write_error');
 WHEN UTL_FILE.INTERNAL_ERROR
 THEN recNgo ('internal_error');
 WHEN OTHERS
 THEN recNgo (SQLERRM); /* TVP 9/2000 */
END;

Benefits

You can debug your UTL_FILE code more rapidly since you can immediately see
what error was encountered.

Files aren’t left open, which can cause “false alarms” in your code. You run your
program once, and it fails (leaving the file open). You fix your program and run it
again, and now your program fails because it’s trying to open a file that’s already
open!

Challenges

UTL_FILE also contains a procedure called FCLOSE_ALL. While this may seem a
convenient choice, you must be careful in using it. Since this closes all file handles
currently open in the session (even in the calling block of code), it can cause
errors in sections of code that are totally unrelated to the real error.

Resources

utlflexc.sql : A template of code containing a local error-handling procedure and an
exception section for use with UTL_FILE.

BIP-05: Encapsulate UTL_FILE.GET_LINE to avoid
propagating the NO_DATA_FOUND exception.

UTL_FILE.GET_LINE raises the NO_DATA_FOUND exception when it reads past
the end of a file (a common and even necessary “error” when you are reading the
full contents of a file).

This reliance on an exception to signal EOF results in poorly structured code.
Consider the following:

BEGIN
 LOOP
 UTL_FILE.GET_LINE (file_id, l_line);
 process_line (l_line);
 END LOOP;

 ... lots of code
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 UTL_FILE.FCLOSE (file_id);
END;

The problem with this code is that the simple loop looks, for all intents and
purpose, like an infinite loop. It’s impossible to tell by looking at the code what
makes the loop terminate. Upon termination, be sure to close the file. This logic is

,ch09.15429 Page 165 Friday, June 15, 2001 5:46 PM

166 Chapter 9: Built-in Packages

implemented in the exception section, which may be far away from the loop. This
physical separation of logically related code can lead to a maintenance nightmare.

Instead of using UTL_FILE.GET_LINE directly, build your own “get next line”
procedure and have it return a Boolean flag indicating whether the EOF was
reached.

Example

Here’s a simple substitution for UTL_FILE.GET_LINE:

CREATE OR REPLACE PROCEDURE get_next_line (
 file_in IN UTL_FILE.file_type,
 line_out OUT VARCHAR2,
 eof_out OUT BOOLEAN
)
IS
BEGIN
 UTL_FILE.GET_LINE (file_in, line_out);
 eof_out := FALSE;
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 line_out := NULL;
 eof_out := TRUE;
END;

Using this program, the earlier block of code becomes:

BEGIN
 LOOP
 get_next_line (file_id, l_line, l_eof);
 EXIT WHEN l_eof;
 process_line (l_line);
 END LOOP;
 UTL_FILE.FCLOSE (file_id);

 ... lots of code
END;

Now, any developer can easily see under what criteria the loop will terminate, and
the file is closed immediately afterwards.

Benefits

Your code is easier to understand and maintain. Logically related code is kept
close together physically.

Resources

getnext.sp : The get_next_line procedure replaces UTL_FILE.GET_LINE.

BIP-06: Soft-code directory names in your calls to
UTL_FILE.FOPEN.

Oracle requires that you pass the directory name along with the filename when
you open a file. The tendency among developers is to place these directory names

,ch09.15429 Page 166 Friday, June 15, 2001 5:46 PM

UTL_FILE 167

directly in the call to UTL_FILE.FOPEN, thinking that the locations of files will not
change or not really envisioning an alternative. A directory name is just one
example of an operating system dependency within PL/SQL code, and you should
make every effort to isolate such dependencies from your business logic.

There are several distinct approaches to avoiding such hard-coding:

• Store directory names in a database table. Instead of calling UTL_FILE.FOPEN
directly, call your own file open function that obtains the directory from the
table, based on various characteristics, such as instance name, development
phase, application component, etc.

• Obtain the current settings for UTL_FILE_DIR (the allowable directories for
read/write activity) and then extract your directory from that string. This is
possible if you can identify the needed directory from its name.

• Add support for a path in UTL_FILE, in which you define a list of directo-
ries from which a file may be read. Again, provide your own encapsulation
of UTL_FILE.FOPEN that reads from the path list instead of a static, single
directory.

The following example demonstrates each technique.

Example

First, let’s take a look at “soft coding” directory names in a database table (I will
not show all the code here; see the “Resources” section for the relevant file refer-
ences). I want to change directories according to phase of development and the
application with which I am working. I create a table:

CREATE TABLE dir (
 phase INTEGER,
 app VARCHAR2(100),
 name VARCHAR2(100));

and then within my fdir package create an encapsulation of UTL_FILE.FOPEN as
follows:

FUNCTION fopen (
 app_in IN dir.app%TYPE,
 file_in IN VARCHAR2,
 mode_in IN VARCHAR2 := 'R'
)
 RETURN UTL_FILE.file_type
IS
 retval UTL_FILE.file_type;
 l_name dir.name%TYPE;
BEGIN
 l_name := fdir.name (app_in);

 IF l_name IS NOT NULL
 THEN
 retval := UTL_FILE.fopen (l_name, file_in, mode_in);
 END IF;

 RETURN retval;
END fopen;

,ch09.15429 Page 167 Friday, June 15, 2001 5:46 PM

168 Chapter 9: Built-in Packages

where fdir.name retrieves the name for an application. The phase of development
is set as a global variable, since I don’t want my actual code to contain references
to the phase.

With the package in place, I can set the phase to “development” in my current
session as follows:

EXEC fdir.setphase (fdir.c_dev);

And then all calls to fdir.open will automatically use the development directory for
whatever application I specify. Here’s an example:

DECLARE
 fid UTL_FILE.file_type;
 l_line VARCHAR2 (100);
BEGIN
 fid := fdir.fopen ('LIBMEM', 'fdir.txt');
 UTL_FILE.get_line (fid, l_line);
 pl (l_line);
 UTL_FILE.fclose (fid);
END;
/

You can also obtain the value for the UTL_FILE_DIR parameter used in your data-
base initialization file either by querying from the V$PARAMETER file:

SELECT value
 FROM v$parameter
 WHERE name = 'utl_file_dir';

or by calling DBMS_UTILITY.GET_PARAMETER_VALUE (available in Oracle8i and
above). See dbparm.pkg for an example of how to use this built-in.

Finally, if you want to explore adding a path to your UTL_FILE open operation,
check out the filepath package (see “Resources”).

Benefits

You can more easily port your code from development to test to production, or to
different operation systems/hardware platforms.

You can change the locations of files in your application without having to change
your code.

Challenges

Set the rules for opening files before you start building your application code.
Create a package that implements the rules, and make sure everyone uses that
package. You can check for compliance with the rule by using the valstd.pkg
package listed in the “Resources” section, along with the following call:

SQL> exec valstd.progwith ('UTL_FILE.FOPEN')

Resources

fdir.pkg and fdir.tst : A package that allows you to define directories in a table
based on development phase and application, and then open files without
hardcoding the directory location. There is also an accompanying test script.

,ch09.15429 Page 168 Friday, June 15, 2001 5:46 PM

DBMS_PIPE 169

filepath.pkg : An encapsulation of UTL_FILE.FOPEN that adds support for a user-
specified path (it can only be used to open files in Read mode).

valstd.pkg : A general (and simple) standards validation package that searches
ALL_SOURCE for the specified string and reports on those programs that
contain the string.

DBMS_PIPE
Use the DBMS_PIPE built-in package to create, write to, and read from database
pipes. Database pipes are chunks of memory in the System Global Area that serve
as conduits of information, primarily between Oracle sessions. Since the informa-
tion is stored in memory, all information in a pipe is lost when a database is shut
down.

Prior to Oracle8 and Oracle8i, database pipes were used to build “a better
debugger” (better than DBMS_OUTPUT, in any case) and, among other activities,
interact with native operating system programs. The external program could then
perform tasks that would otherwise be impossible from within PL/SQL.

BIP-07: Encapsulate interaction with specific pipes.

A pipe is identified by its name: a string of up to 128 characters. Messages that are
written to, and read from, a pipe can be composed of one or more “packets,” and
each message can be made up of different numbers and types of packets (for
example, two strings and a number or 12 dates). Working with a pipe can raise
both pipe-specific and general errors.

For all these reasons, whenever you are working with a database pipe (or pipes),
you should encapsulate access to that pipe behind a package interface. Make sure
that no user of a pipe hard-codes the name of the pipe in his logic. Avoid the
explicit packing and unpacking of message contents; instead, call procedures to
do that work for you and for any other developer.

Example

Here’s an example of a pipe encapsulation package around the book table:

CREATE OR REPLACE PACKAGE pe_book

-- Wrapper around pipe based on book

-- NOTE: EXECUTE authority on DBMS_LOCK is required.
-- Issue this command from SYS:
-- GRANT EXECUTE ON DBMS_LOCK TO PUBLIC;

IS
 c_name CONSTANT VARCHAR2 (200) := 'BOOK_pipe';

/* Overloadings of send */

 PROCEDURE send (
 isbn_in IN book.isbn%TYPE DEFAULT NULL,
 title_in IN book.title%TYPE DEFAULT NULL,

,ch09.15429 Page 169 Friday, June 15, 2001 5:46 PM

170 Chapter 9: Built-in Packages

 summary_in IN book.summary%TYPE DEFAULT NULL,
 author_in IN book.author%TYPE DEFAULT NULL,
 date_published_in IN book.date_published%TYPE DEFAULT NULL,
 page_count_in IN book.page_count%TYPE DEFAULT NULL,
 wait IN INTEGER := 0
);

 PROCEDURE send (rec_in IN book%ROWTYPE, wait IN INTEGER := 0);

/* Overloadings of receive */

 PROCEDURE receive (
 isbn_out OUT book.isbn%TYPE,
 title_out OUT book.title%TYPE,
 summary_out OUT book.summary%TYPE,
 author_out OUT book.author%TYPE,
 date_published_out OUT book.date_published%TYPE,
 page_count_out OUT book.page_count%TYPE,
 wait IN INTEGER := 0
);

 PROCEDURE receive (
 rec_out OUT book%ROWTYPE,
 wait IN INTEGER := 0
);
END pe_book;

With this package in place, I can easily write the contents of a record to a pipe:

DECLARE
 book_rec book%ROWTYPE;
BEGIN
 book_rec := last_book_reserved;
 pe_book.send (book_rec);

I leave it to the package to do all the hard work; I don’t even have to know the
name of the pipe; heck, I don’t even have to know how DBMS_PIPE works! And if
the pipe name needs to change or even if a column is added to the book table,
this code doesn’t have to be modified at all.

Benefits

Users of the pipe encapsulation package can concentrate on the logical work they
want to accomplish, rather than on the details of managing pipes. This improves
developer productivity and the resulting quality of their code.

Challenges

The biggest challenge is to build these packages. It can take lots of work, espe-
cially if you are encapsulating a table with lots of columns. You should investigate
ways to generate, rather than write such code. See DEV-05 for code generation
options.

Resources

pe_book.pkg : The full implementation of the pipe encapsulation package for the
book table.

,ch09.15429 Page 170 Friday, June 15, 2001 5:46 PM

DBMS_PIPE 171

BIP-08: Provide explicit and appropriate timeout values
when you send and receive messages.

When you send or receive a message via a database pipe, you can specify how
long you are willing to wait for the operation to succeed. A pipe might be full,
which means that you can’t immediately send to that pipe. A pipe might be empty,
which means that you can’t immediately receive a message from that pipe.

The default wait time for DBMS_PIIPE is 86.4 million seconds, otherwise known as
1,000 days. This is an awfully long time wait for an operation to complete, and
could cause problems in your application. You should never rely on the default
timeout values in any DBMS_PIPE calls. Always provide an override.

Example

Here’s the implementation of the pe_book.send procedure:

PROCEDURE pe_book.receive (
 isbn_out OUT book.isbn%TYPE,
 title_out OUT book.title%TYPE,
 summary_out OUT book.summary%TYPE,
 author_out OUT book.author%TYPE,
 date_published_out OUT book.date_published%TYPE,
 page_count_out OUT book.page_count%TYPE,
 wait IN INTEGER := 0
)
IS
BEGIN
 -- Receive next message and unpack for each column.
 g_status := DBMS_PIPE.receive_message (defname, wait);

 IF g_status = 0
 THEN
 DBMS_PIPE.unpack_message (isbn_out);
 DBMS_PIPE.unpack_message (title_out);
 DBMS_PIPE.unpack_message (summary_out);
 DBMS_PIPE.unpack_message (author_out);
 DBMS_PIPE.unpack_message (date_published_out);
 DBMS_PIPE.unpack_message (page_count_out);
 END IF;

 g_action := 'RECEIVE_MESSAGE';
END;

In this case, I always override the default wait time with the value passed in by the
wait parameter. The default value on wait is 0 seconds (immediate success
required or it times out), but it can be overridden by a user of the package.

Benefits

You can avoid having your application appear frozen as it waits virtually forever
for a “green light” from the pipe.

,ch09.15429 Page 171 Friday, June 15, 2001 5:46 PM

172 Chapter 9: Built-in Packages

Challenges

Your code to handle the lack of a message on the pipe needs to be just as robust
as the code to handle a valid message. This may not be a valid condition
depending on your application, but should always be handled.

Resources

pe_book.pkg : The full implementation of the pipe encapsulation package for the
book table.

BIP-09: Use RESET_BUFFER in exception handlers and before
you pack data into the message buffer.

Each session connected to Oracle has a message buffer that can contain up to
4096 bytes of information. You can place data into the buffer with calls to DBMS_
PIPE.PACK_MESSAGE and DBMS_PIPE.RECEIVE_MESSAGE.

Prior to packing data into the buffer, you should not assume it’s empty. Your last
unpack operation might have left some data in the buffer, or a previous pack-and-
send operation could have failed with an exception. For these reasons, you should
call DBMS_PIPE.RESET_BUFFER both before you pack data into the message
buffer and in exception handlers in blocks where the buffer may have been
partially filled.

Example

The pipe encapsulation package for the book table, pe_book, offers this imple-
mentation of the send operation:

PROCEDURE pe_book.send (
 isbn_in IN book.isbn%TYPE DEFAULT NULL,
 title_in IN book.title%TYPE DEFAULT NULL,
 summary_in IN book.summary%TYPE DEFAULT NULL,
 author_in IN book.author%TYPE DEFAULT NULL,
 date_published_in IN book.date_published%TYPE DEFAULT NULL,
 page_count_in IN book.page_count%TYPE DEFAULT NULL,
 wait IN INTEGER := 0
)
IS
BEGIN
 -- Clear the buffer before writing.
 DBMS_PIPE.reset_buffer;

 -- For each column, pack item into buffer.
 DBMS_PIPE.pack_message (isbn_in);
 DBMS_PIPE.pack_message (title_in);
 DBMS_PIPE.pack_message (summary_in);
 DBMS_PIPE.pack_message (author_in);
 DBMS_PIPE.pack_message (date_published_in);
 DBMS_PIPE.pack_message (page_count_in);

 -- Send the message
 g_status :=
 DBMS_PIPE.send_message (defname, NVL (wait, g_sendwait));

,ch09.15429 Page 172 Friday, June 15, 2001 5:46 PM

DBMS_ JOB 173

 g_action := 'SEND_MESSAGE';
EXCEPTION
 WHEN OTHERS
 THEN
 DBMS_PIPE.reset_buffer;
 RAISE;
END;

The first step taken is a resetting of the buffer. If you don’t do this, it’s quite
possible for the buffer to have a previous set of book information that was never
sent, or some other data. Finally, the exception section makes sure to empty out
the buffer before re-raising the same exception.

Benefits

The contents in the database pipe are more dependable, leading to a higher likeli-
hood of correct program behavior.

Resources

pe_book.pkg : The full implementation of the pipe encapsulation package for the
book table.

DBMS_ JOB
The DBMS_ JOB built-in package offers an API into an Oracle subsystem known as
the job queue. The Oracle job queue allows for the scheduling and execution of
PL/SQL routines (jobs) at predefined times and/or repeated job execution at
regular intervals. DBMS_ JOB provides programs for submitting and executing jobs,
changing job execution parameters, and removing or temporarily suspending job
execution. And that’s all great, but DBMS_ JOB has several key weaknesses,
including:

• Little or no job management features. A job is assigned an ID number, but
you can’t give your job a name, which makes it hard to locate and manage
the job after submission.

• Scheduling the frequency of execution can be complicated process. If you
want a job to run every Monday, Wednesday, and Friday at noon, for exam-
ple, you need to pass the following string to DBMS_JOB.SUBMIT:

'TRUNC(LEAST(NEXT_DAY,(SYSDATE, ''MONDAY''),
 NEXT_DAY(,(SYSDATE, ''WEDNESDAY''),
 NEXT_DAY(,(SYSDATE, ''FRIDAY''))) + 1/2'

As with the other built-in packages discussed in this chapter, you can overcome
such weaknesses by building your own layer of code around the DBMS_ JOB
procedures.

,ch09.15429 Page 173 Friday, June 15, 2001 5:46 PM

174 Chapter 9: Built-in Packages

BIP-10: Use your own submission procedure to improve job
management capabilities.

As noted earlier, there’s no way to assign a name to a job with DBMS_JOB. A job
name comes in very handy for a number of purposes, including easy analysis of
job status and a way to handle jobs that fail.

Rather than call DBMS_ JOB.SUBMIT directly, you should build an encapsulation
around that procedure, which submits the job, but also keep track of additional
job information.

Example

The myJob package (see the “Resources” section) offers a simple encapsulation of
DBMS_ JOB submit that also populates a database table with additional job infor-
mation (in this case, only the name of the job).

Here’s the submit procedure:

FUNCTION myJob.submit (
 name_in IN job.name%TYPE,
 what_in IN job.what%TYPE,
 next_date_in IN DATE := SYSDATE,
 interval_in IN job.interval%TYPE := NULL
)
 RETURN job.id%TYPE
IS
 retval job.id%TYPE;
BEGIN
 DBMS_JOB.submit (retval, what_in, next_date_in, interval_in
);

 INSERT INTO job
 (id, name, what, next_date, interval)
 VALUES (
 retval, name_in, what_in, next_date_in, interval_in
);

 COMMIT;
 RETURN retval;
END submit;

Now that this information is available to me, you can use it in your other proce-
dures. You can, for example, now remove a job by name:

BEGIN
 myJob.remove ('weekly_analysis');

Most important, you can reference the job by name within the exception section of
the job’s stored procedure, which is crucial for managing jobs that fail (see BIP-11).

,ch09.15429 Page 174 Friday, June 15, 2001 5:46 PM

DBMS_ JOB 175

The myJob.submit procedure also performs a COMMIT after sub-
mitting the job and inserting the job information into my job table.
You should always COMMIT after a call to DBMS_JOB.SUBMIT,
especially if you want your job to execute immediately.

Benefits

It’s much easier to manage a job when you can give a name that is meaningful in
the context of your application.

Challenges

Ensure that all developers know about and use the job encapsulation code. And,
of course, you need to build the package as well!

Resources

myjob.pkg : A prototype package that demonstrates how to give a name to a job
and then manage that job by name.

PLVjob : The Active PL/SQL Knowledge Base of RevealNet includes the PLVjob
package, which offers many additional features for DBMS_JOB users. You can
manage jobs by name and also schedule jobs through a variety of means,
including cron syntax.

BIP-11: Trap all errors in DBMS_ JOB-executed stored
procedures and modify the job queue accordingly.

Oracle keeps track of the number of times a job fails (raises an unhandled excep-
tion); once it fails 16 times, the job is marked as “broken.” That’s handy, but not
very practical. If a job breaks once, it will probably break again. More impor-
tantly, though, the DBA should be made aware of a job failure so that the code (or
the execution environment) can be modified to allow the job to run successfully.

You can improve upon DBMS_ JOB by trapping all errors that occur in your job
blocks and stored procedure calls. Immediately mark the job as broken, so that
Oracle doesn’t try to run the job again and again, and send out an alert of some
sort so that the job can be fixed.

Example

Now the myJob package will come in handy. With myJob, I can assign a name to a
job and use that name to obtain the job ID number. This means that I can write an
exception section in my stored procedure like this:

CREATE OR REPLACE PROCEDURE calculate_overdue_fines (...)
IS
 c_program CONSTANT VARCHAR2(30) :=
 'calculate_overdue_fines';
BEGIN
...
EXCEPTION

,ch09.15429 Page 175 Friday, June 15, 2001 5:46 PM

176 Chapter 9: Built-in Packages

 WHEN OTHERS
 THEN
 myJob.broken (myJob.id (c_program);
 dba_beeper.notify (c_program, SQLERRM);
END;

Note that I don’t offer an implementation of the dba_beeper.notify procedure!

Benefits

Following this best practice will help you avoid repetitive, failed executions of
jobs.

You can also repair broken jobs more quickly.

Challenges

Ensure that all developers know about and use the job encapsulation package in
error handlers. And, of course, you need to build the package as well!

Resources

myjob.pkg : A prototype package that demonstrates how to give a name to a job
and then manage that job by name.

,ch09.15429 Page 176 Friday, June 15, 2001 5:46 PM

177

AppendixA

A
1.Best Practices

Quick Reference

This appendix compiles the best practice titles across all the chapters into
a concise reference. Once you have studied the individual best practices,
you can use this appendix as a checklist, to be reviewed before you begin
coding a new program or application.

You can also find a removable version of this quick reference bound into
the back of the book.

1. The Development Process

DEV-01: Set standards and guidelines before writing any code.
DEV-02: Ask for help after 30 minutes on a problem.
DEV-03: Walk through each other’s code.
DEV-04: Validate standards against source code in the database.
DEV-05: Generate code whenever possible and appropriate.
DEV-06: Set up and use formal unit testing procedures.
DEV-07: Use independent testers for functional sign-off.

2. Coding Style and Conventions

STYL-01: Adopt a consistent, readable format that is easy to maintain.
STYL-02: Adopt logical, consistent naming conventions for modules and data

structures.
STYL-03: Standardize module and program headers.
STYL-04: Tag module END statements with module names.
STYL-05: Name procedures with verb phrases and functions with noun phrases.
STYL-06: Self-document using block and loop labels.
STYL-07: Express complex expressions unambiguously using parentheses.

,appa.14145 Page 177 Friday, June 15, 2001 5:45 PM

178 Appendix A: Best Practices Quick Reference

STYL-08: Use vertical code alignment to emphasize vertical relationships.
STYL-09: Comment tersely with value-added information.
STYL-10: Adopt meaningful naming conventions for source files.

3. Variables and Data Structures

Declaring Variables and Data Structures

DAT-01: Match datatypes to computational usage.
DAT-02: Anchor variables to database datatypes using %TYPE and %ROWTYPE.
DAT-03: Use SUBTYPE to standardize application-specific datatypes.
DAT-04: Do not hard-code VARCHAR2 lengths.
DAT-05: Use CONSTANT declarations for variables whose values do not change.
DAT-06: Perform complex variable initialization in the executable section.

Using Variables and Data Structures

DAT-07: Replace complex expressions with Boolean variables and functions.
DAT-08: Do not overload data structure usage.
DAT-09: Remove unused variables and code.
DAT-10: Clean up data structures when your program terminates (successfully or

with an error).
DAT-11: Beware of and avoid implicit datatype conversions.

Declaring and Using Package Variables

DAT-12: Package application-named literal constants together.
DAT-13: Centralize TYPE definitions in package specifications.
DAT-14: Use package globals judiciously and only in package bodies.
DAT-15: Expose package globals using “get and set” modules.

4. Control Structures

Conditional and Boolean Logic

CTL-01: Use ELSIF with mutually exclusive clauses.
CTL-02: Use IF...ELSIF only to test a single, simple condition.
CTL-03: Replace and simplify IF statements with Boolean expressions.

Loop Processing

CTL-04: Never EXIT or RETURN from WHILE and FOR loops.
CTL-05: Use a single EXIT in simple loops.
CTL-06: Use a simple loop to avoid redundant code required by a WHILE loop.
CTL-07: Never declare the FOR loop index.
CTL-08: Scan collections using FIRST, LAST, and NEXT in loops.
CTL-09: Move static expressions outside of loops and SQL statements.

Miscellaneous

CTL-10: Use anonymous blocks within IF statements to conserve resources.
CTL-11: Label and highlight GOTOs if using this normally unnecessary construct.

,appa.14145 Page 178 Friday, June 15, 2001 5:45 PM

Best Practices Quick Reference 179

5. Exception Handling

EXC-00: Set guidelines for application-wide error handling before you start
coding.

Raising Exceptions

EXC-01: Verify preconditions using standardized assertion routines that raise
violation exceptions.

EXC-02: Use the default exception-handling model to communicate module
status back to calling PL/SQL programs.

EXC-03: Catch all exceptions and convert to meaningful return codes before
returning to non-PL/SQL host programs.

EXC-04: Use your own raise procedure in place of explicit calls to RAISE_
APPLICATION_ERROR.

EXC-05: Only RAISE exceptions for errors, not to branch execution control.
EXC-06: Do not overload an exception with multiple errors unless the loss of

information is intentional.

Handling Exceptions

EXC-07: Handle exceptions that cannot be avoided but can be anticipated.
EXC-08: Avoid hard-coded exposure of error handling by using standard, declara-

tive procedures.
EXC-09: Use named constants to soft-code application-specific error numbers and

messages.
EXC-10: Include standardized modules in packages to dump package state when

errors occur.
EXC-11: Use WHEN OTHERS only for unknown exceptions that need to be

trapped.

Declaring Exceptions

EXC-12: Standardize named application exceptions in package specifications.
EXC-13: Document all package exceptions by module in package specifications.
EXC-14: Use the EXCEPTION_INIT pragma to name system exceptions that might

be raised by your program.

6. Writing SQL in PL/SQL

SQL-00: Establish and follow clear rules for how to write SQL in your application.

General SQL and Transaction Management

SQL-01: Qualify PL/SQL variables with their scope names when referenced inside
SQL statements.

SQL-02: Use incremental COMMITs to avoid rollback segment errors when
changing large numbers of rows.

SQL-03: Use autonomous transactions to isolate the effect of COMMITs and
ROLLBACKs (Oracle8i).

,appa.14145 Page 179 Friday, June 15, 2001 5:45 PM

180 Appendix A: Best Practices Quick Reference

Querying Data from PL/SQL

SQL-04: Put single-row fetches inside functions; never hard-code a query in your
block.

SQL-05: Hide reliance on the dual table.
SQL-06: Define multi-row cursors in packages so they can be used from multiple

programs.
SQL-07: Fetch into cursor records, never into a hard-coded list of variables.
SQL-08: Use COUNT only when the actual number of occurrences is needed.
SQL-09: Use a cursor FOR loop to fetch all rows in a cursor unconditionally.
SQL-10: Never use a cursor FOR loop to fetch just one row.
SQL-11: Specify columns to be updated in a SELECT FOR UPDATE statement.
SQL-12: Parameterize explicit cursors.
SQL-13: Use RETURNING to retrieve information about modified rows (Oracle8).
SQL-14: Use BULK COLLECT to improve performance of multi-row queries

(Oracle8i).

Changing Data from PL/SQL

SQL-15: Encapsulate INSERT, UPDATE and DELETE statements behind proce-
dure calls.

SQL-16: Reference cursor attributes immediately after executing the SQL
operation.

SQL-17: Check SQL%ROWCOUNT when updating or removing data that “should”
be there.

SQL-18: Use FORALL to improve performance of collection-based DML
(Oracle8i).

Dynamic SQL and Dynamic PL/SQL

SQL-19: Encapsulate dynamic SQL parsing to improve error detection and
cleanup.

SQL-20: Bind, do not concatenate, variable values into dynamic SQL strings.
SQL-21: Soft-code the maximum length of columns in DBMS_SQL.DEFINE_

COLUMN calls.
SQL-22: Apply the invoker rights method to all stored code that executes

dynamic SQL (Oracle8i).
SQL-23: Standardize the format of complex dynamic SQL strings.

7. Program Construction

Structure and Parameters

MOD-01: Encapsulate and name business rules and formulas behind function
headers.

MOD-02: Standardize module structure using function and procedure templates.
MOD-03: Limit execution section sizes to a single page using modularization.
MOD-04: Use named notation to clarify, self-document, and simplify module calls.
MOD-05: Avoid side-effects in your programs.
MOD-06: Use NOCOPY to minimize overhead when collections and records are

[IN] OUT parameters (Oracle8i).

,appa.14145 Page 180 Friday, June 15, 2001 5:45 PM

Best Practices Quick Reference 181

Functions

MOD-07: Limit functions to a single RETURN statement in the execution section.
MOD-08: Keep functions pure by avoiding [IN] OUT parameters.
MOD-09: Never return NULL from Boolean functions.

Triggers

MOD-10: Minimize the size of trigger execution section sizes.
MOD-11: Consolidate “overlapping” DML triggers to control execution order.
MOD-12: Raise exceptions to report on do-nothing INSTEAD OF triggers.
MOD-13: Implement server problem logs and “to do” lists using database triggers.
MOD-14: Use ORA_% public synonyms to reference database and schema event

trigger attributes.
MOD-15: Validate complex business rules with DML triggers.
MOD-16: Populate columns of derived values with triggers.
MOD-17: Use operational directives to provide more meaningful error messages

from within triggers.

8. Package Construction

PKG-01: Group related data structures and functionality together in a single
package.

PKG-02: Provide well-defined interfaces to business data and functional manipu-
lation using packages.

PKG-03: Freeze and build package specifications before implementing package
bodies.

PKG-04: Implement flexible, user-adjustable functionality using package state
toggles and related techniques.

PKG-05: Build trace “windows” into your packages using standardized programs.
PKG-06: Use package body persistent data structures to cache and optimize data-

driven processing.
PKG-07: Insulate applications from Oracle version sensitivity using version-

specific implementations.
PKG-08: Avoid bloating package code with unnecessary but easy-to-build

modules.
PKG-09: Simplify and encourage module usage using overloading to widen

calling options.
PKG-10: Consolidate the implementation of related overloaded modules.
PKG-11: Separate package specifications and bodies into different source code

files.
PKG-12: Use a standard format for packages that include comment headers for

each type of element defined in the package.

,appa.14145 Page 181 Friday, June 15, 2001 5:45 PM

182 Appendix A: Best Practices Quick Reference

9. Built-in Packages

DBMS_OUTPUT

BIP-01: Avoid using the DBMS_OUTPUT.PUT_LINE procedure directly.

UTL_FILE

BIP-02: Improve the functionality and error handling of UTL_FILE by using a
comprehensive encapsulation package.

BIP-03: Validate the setup of UTL_FILE with simple tests.
BIP-04: Handle expected and named exceptions when performing file I/O.
BIP-05: Encapsulate UTL_FILE.GET_LINE to avoid propagating the NO_DATA_

FOUND exception.
BIP-06: Soft-code directory names in your calls to UTL_FILE.FOPEN

DBMS_PIPE

BIP-07: Encapsulate interaction with specific pipes.
BIP-08: Provide explicit and appropriate timeout values when you send and

receive messages.
BIP-09: Use RESET_BUFFER in exception handlers and before you pack data

into the message buffer.

DBMS_JOB

BIP-10: Use your own submission procedures to improve job management
capabilities.

BIP-11: Trap all errors in DBMS_JOB-executed stored procedures and modify
the job queue accordingly.

,appa.14145 Page 182 Friday, June 15, 2001 5:45 PM

About the Author

Steven Feuerstein is considered one of the world’s leading experts on the Oracle
PL/SQL language. He is the author or coauthor of Oracle PL/SQL Programming, Ora-
cle PL/SQL Programming: Guide to Oracle8i Features, Oracle PL/SQL Developer’s
Workbook, Oracle Built-in Packages, Advanced Oracle PL/SQL Programming with
Packages, and several pocket reference books (all from O’Reilly & Associates).
Steven is a Senior Technology Advisor with Quest Software, has been developing
software since 1980, and worked for Oracle Corporation from 1987 to 1992.

Steven hosts the PL/SQL Pipeline, an online community for PL/SQL developers
(http://www.revealnet.com/Pipelines/PLSQL/index.htm) and contributes to Reveal-
Net’s Active PL/SQL Knowledge Base. He offers training and consulting on software
development and the Oracle PL/SQL language through PL/Solutions (http://www.
plsolutions.com).

In matters pertaining to humanity rather than programming, Steven currently serves
as president of the Board of Directors of the Crossroads Fund, which makes grants
to Chicagoland organizations working for social, racial, environmental, and eco-
nomic justice (http://www.CrossroadsFund.org). He is also active in Not In My Name,
a gathering of Jews who seek a lasting and just peace between Israelis and Palestin-
ians (http://www.nimn.org). You can reach Steven at steven@stevenfeuerstein.com.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Oracle PL/SQL Best Practices is a red wood ant. Red wood
ants (Formica aquilonia) are often the dominant ants of forests throughout the
northern hemisphere. F. aquilonia can build nest mounds of dried spruce needles
and twigs that are three feet or more in diameter and height. Each nest can contain
thousands of ants as well as several queens. The insects have no sting but can defend
themselves by firing formic acid from their rear ends when disturbed.

The workers vary in size up to about 1/2 inch in length with a red thorax, black
abdomen, and red and black marked head. The ants are both scavengers and general
predators of insects, carrying many soft-bodied caterpillars, flies, and sawflies along
their several major trails back to the nest.

Red wood ants are a keystone species (i.e., without them the ecosystem changes fun-
damentally). When red ants disappear from a system, herbivorous insects can
subsequently damage forest trees. In forests weakened by pollution and acid rain in
central Europe, red wood ant populations are often endangered, which in turn
causes further imbalances in predator-prey dynamics and the ecosystem. These rare
ants are protected by law in some European countries because of their great value
in destroying forest pests.

,AUTHOR.COLO.16917 Page 1 Friday, June 15, 2001 6:10 PM

For 28 years, Professor Seigo Higashi has been studying a supercolony of Japanese
red wood ants (Formica yessensis), which dwell along a strip of shoreline on the Ish-
ikari coast of northern Japan. When first discovered in 1973, the colony consisted of
approximately 45,000 nests with connecting tunnels extending nearly 12.4 miles
along the shore of the Japan Sea. It was estimated that the colony had about 306
million workers and 1.1 million queens, and is thought to be about 1,000 years old.
Since 1973, the colony has been under siege, threatened by the development of
infrastructure for a new port on Ishikari Bay, which has occurred on top of 30% of
the ant megalopolis. This has reduced the number of red wood ants living there by
more than half.

The Ishikari ants are one of only two known ant supercolonies in the world. The
other, smaller one is in the Swiss Jura mountains.

Mary Anne Weeks Mayo was the production editor, and Clairemarie Fisher O’Leary
was the copyeditor for Oracle PL/SQL Best Practices . Mary Sheehan, Matt Hutchin-
son, and Jane Ellin provided quality control. Rachel Wheeler and Gabe Weiss
provided production assistance.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial
Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe’s ITC Garamond font.

David Futato designed the interior layout based on a series design by Nancy Priest.
Clifford Dyer and Anne-Marie Vaduva converted the files from Microsoft Word to
FrameMaker 5.5.6 using tools created by Mike Sierra. The text and heading fonts are
ITC Garamond Light and Garamond Book. This colophon was compiled by Mary
Anne Weeks Mayo.

Whenever possible, our books use a durable and flexible lay-flat binding. If the page
count exceeds this binding’s limit, perfect binding is used.

,AUTHOR.COLO.16917 Page 2 Friday, June 15, 2001 6:10 PM

	Front Matter
	Copyright
	Dedication
	Table of Contents
	Preface
	Acknowledgments
	1. The Development Process
	2. Coding Style and Conventions
	3. Variables and Data Structures
	4. Control Structures
	5. Exception Handling
	6. Writing SQL in PL/SQL
	7. Program Construction
	8. Package Construction
	9. Built-in Packages
	Appendix A. Best Practices Quick Reference
	About the Author & Colophon

